Bayesian Theory and Computation

Lecture 8: Importance Sampling

Cheng Zhang

School of Mathematical Sciences, Peking University

March 20, 2024

Overview

- ▶ While Monte Carlo estimation is attractive for high dimension integration, it may suffer from lots of problems, such as rare events, and irregular integrands, etc.
- ▶ In this lecture, we will discuss various methods to improve Monte Carlo approaches, with an emphasis on variance reduction techniques

What's Wrong with Simple Monte Carlo?

• The simple Monte Carlo estimator of $\int_a^b h(x) f(x) dx$ is

$$\hat{I}_n = \frac{1}{n} \sum_{i=1}^n h(x^{(i)})$$

where $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ are randomly sampled from f

- A potential problem is the mismatch of the concentration of h(x)f(x) and f(x). More specifically, if there is a region A of relatively small probability under f(x) that dominates the integral, we would not get enough data from the **important** region A by sampling from f(x)
- ▶ Main idea: Get more data from A, and then correct the bias

3/31

Importance Sampling

- Importance sampling (IS) uses importance distribution q(x) to adapt to the true integrands h(x)f(x), rather than the target distribution f(x)
- ▶ By correcting for this bias, importance sampling can greatly reduce the variance in Monte Carlo estimation
- ▶ Unlike the rejection sampling, we do not need the envelop property
- The only requirement is that q(x) > 0 whenever

$$h(x)f(x)\neq 0$$

▶ IS also applies when f(x) is not a probability density function

Importance Sampling

▶ Now we can rewrite $I = \mathbb{E}_f(h(x)) = \int_{\mathcal{X}} h(x)f(x) dx$ as

$$I = \mathbb{E}_f(h(x)) = \int_{\mathcal{X}} h(x)f(x) \, dx$$
$$= \int_{\mathcal{X}} h(x)\frac{f(x)}{q(x)}q(x)dx$$
$$= \int_{\mathcal{X}} (h(x)w(x))q(x)$$
$$= \mathbb{E}_q(h(x)w(x))$$

where $w(x) = \frac{f(x)}{q(x)}$ is the importance weight function

We can then approximate the original expectation as follows

- Draw samples $x^{(1)}, \ldots, x^{(n)}$ from q(x)
- ▶ Monte Carlo estimate

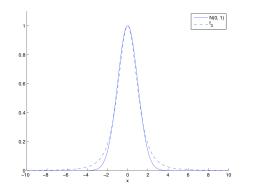
$$I_n^{\rm IS} = \frac{1}{n} \sum_{i=1}^n h(x^{(i)}) w(x^{(i)})$$

where $w(x^{(i)}) = \frac{f(x^{(i)})}{q(x^{(i)})}$ are called importance ratios.

▶ Note that, now we only require sampling from q and do not require sampling from f

Examples

• We want to approximate a $\mathcal{N}(0,1)$ distribution with t(3) distribution



• We generate 500 samples and estimated $I = \mathbb{E}(x^2)$ as 0.97, which is close to the true value 1.

Mean and Variance of IS

▶ Let t(x) = h(x)w(x). Then $\mathbb{E}_q(t(X)) = I, X \sim q$

$$\mathbb{E}(I_n^{\mathrm{IS}}) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(t(x^{(i)}) = I$$

► Similarly, the variance is

$$\begin{aligned} \mathbb{V}\operatorname{ar}_{q}(I_{n}^{\mathrm{IS}}) &= \frac{1}{n} \mathbb{V}\operatorname{ar}_{q}(t(X)) \\ &= \frac{1}{n} \int_{\mathcal{X}} \frac{(h(x)f(x))^{2}}{q(x)} \, dx - I^{2} \qquad (1) \\ &= \frac{1}{n} \int_{\mathcal{X}} \frac{(h(x)f(x) - Iq(x))^{2}}{q(x)} \, dx \qquad (2) \end{aligned}$$

Variance Does Matter

▶ Recall the convergence rate for Monte Carlo is

$$p\left(|\hat{I}_n - I| \le \frac{\sigma}{\sqrt{n\delta}}\right) \ge 1 - \delta, \quad \forall \delta$$

For IS, $\sigma = \sqrt{\mathbb{V}ar_q(t(X))}$. A good importance distribution q(x) would make $\mathbb{V}ar_q(t(X))$ small.

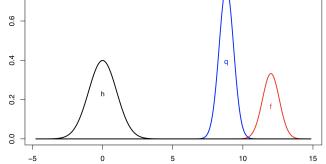
• What can we learn from equations (1) and (2)?

- Optimal choice: $q(x) \propto h(x)f(x)$
- ▶ q(x) near 0 can be dangerous

• Bounding $\frac{(h(x)f(x))^2}{q(x)}$ is useful theoretically

Examples

0.8



 $\operatorname{Var}_q(t(X)) = 0$ Gaussian h and $f \Rightarrow$ Gaussian optimal q lies between.

Self-normalized Importance Sampling

• When f or/and q are unnormalized, we can esitmate the expectation as follows

$$I = \frac{\int_{\mathcal{X}} h(x) f(x) \, dx}{\int_{\mathcal{X}} f(x) \, dx} = \frac{\int_{\mathcal{X}} h(x) \frac{f(x)}{q(x)} q^*(x) \, dx}{\int_{\mathcal{X}} \frac{f(x)}{q(x)} q^*(x) \, dx}$$

where
$$q^*(x) = q(x)/c_q$$

▶ Monte Carlo estimate

$$I_n^{\text{SNIS}} = \frac{\sum_{i=1}^n h(x^{(i)}) w(x^{(i)})}{\sum_{i=1}^n w(x^{(i)})}, \quad x^{(i)} \sim q(x)$$

▶ Requires a stronger condition: q(x) > 0 whenever f(x) > 0

SNIS is Consistent

• Unfortunately, I_n^{SNIS} is biased. However, the bias is asymptotically negligible.

$$\begin{split} I_n^{\text{SNIS}} &= \frac{1}{n} \sum_{i=1}^n h(x^{(i)}) f(x^{(i)}) / q(x^{(i)}) \middle/ \frac{1}{n} \sum_{i=1}^n f(x^{(i)}) / q(x^{(i)}) \\ & \xrightarrow{P} \int_{\mathcal{X}} h(x) f(x) / q(x) q^*(x) \, dx \middle/ \int_{\mathcal{X}} f(x) / q(x) q^*(x) \, dx \\ &= \int_{\mathcal{X}} h(x) f(x) \, dx \middle/ \int_{\mathcal{X}} f(x) \, dx \\ &= I \end{split}$$

SNIS Variance

▶ We use delta method for the variance of SNIS, which is a ratio estimate

$$\mathbb{V}\mathrm{ar}(I_n^{\mathrm{SNIS}}) \approx \frac{\sigma_{q,\mathrm{sn}}^2}{n} = \frac{\mathbb{E}_q(w(x)^2(h(x) - I)^2)}{n}$$

• We can rewrite the variance $\sigma_{q,\mathrm{sn}}^2$ as

$$\sigma_{q,\mathrm{sn}}^2 = \int_{\mathcal{X}} \frac{f(x)^2}{q(x)} (h(x) - I)^2 dx$$
$$= \int_{\mathcal{X}} \frac{(h(x)f(x) - If(x))^2}{q(x)} dx$$

For comparison, σ²_{q,is} = Var_q(t(X)) = ∫_X (h(x)f(x)-Iq(x))²/q(x) dx
No q can make σ²_{q,sn} = 0 (unless h is constant)

Optimial SNIS

▶ The optimal density for self-normalized importance sampling has the form (Hesterberg, 1988)

$$q(x) \propto |h(x) - I| f(x)$$

▶ Using this formula we find that

$$\sigma_{q,\mathrm{sn}}^2 \ge (\mathbb{E}_f(|h(x) - I|))^2$$

which is zero only for constant h(x)

► Note that the simple Monte Carlo has variance $\sigma^2 = \mathbb{E}_f((h(x) - I)^2)$, this means SNIS can not reduce the variance by

$$\frac{\sigma^2}{\sigma_{q,\mathrm{sn}}^2} \le \frac{\mathbb{E}_f((h(x) - I)^2)}{(\mathbb{E}_f(|h(x) - I|))^2}$$

Importance Sampling Diagnostics

- ▶ The importance weights in IS may be problematic, we would like to have a diagnostic to tell us when it happens.
- ► Unequal weighting raises variance (Kong, 1992). For IID Y_i with variance σ^2 and fixed weight $w_i \ge 0$

$$\mathbb{V}\mathrm{ar}\left(\frac{\sum_i w_i Y_i}{\sum_i w_i}\right) = \frac{\sum_i w_i^2 \sigma^2}{(\sum_i w_i)^2}$$

▶ Write this as

$$\frac{\sigma^2}{n_e}$$
 where $n_e = \frac{(\sum_i w_i)^2}{\sum_i w_i^2}$

▶ n_e is the effective sample size and $n_e \ll n$ if the weights are too imbalanced.

Importance Sampling vs Rejection Sampling

- ▶ Rejection Sampling requires bounded w(x) = f(x)/q(x)
- ▶ We also have to know a bound for the envelop distribution
- ▶ Therefore, importance sampling is generally easier to implement
- ▶ IS and SNIS require us to keep track of weights
- ▶ Plain IS requires normalized p/q
- Rejection sampling could be sample inefficient (due to rejections)

Exponential Tilting

- Consider that $f(x) = p(x; \theta_0)$ is from a family of distributions $p_{\theta}(x), \ \theta \in \Theta$
- ► A simple importance sampling distribution would be $q(x) = p(x; \theta)$ for some $\theta \in \Theta$.
- Suppose f(x) belongs to an exponential family

$$f(x) = g(x) \exp(\eta(\theta_0)^T T(x) - A(\theta_0))$$

► Use $q(x) = g(x) \exp(\eta(\theta)^T T(x) - A(\theta))$, the IS estimate is

$$I_n^{\rm IS} = \exp(A(\theta) - A(\theta_0)) \cdot \frac{1}{n} \sum_{i=1}^n h(x^{(i)}) \exp((\eta(\theta_0) - \eta(\theta))^T T(x^{(i)})$$

Hessian and Gaussian

- ▶ Suppose that we find the mode x^* of k(x) = h(x)f(x)
- ▶ We can use Taylor approximation

$$\log(k(x)) \approx \log(k(x^*)) - \frac{1}{2}(x - x^*)^T H^*(x - x^*)$$
$$k(x) \approx k(x^*) \exp\left(-\frac{1}{2}(x - x^*)^T H^*(x - x^*)\right)$$

which suggests $q(x) = \mathcal{N}(x^*, (H^*)^{-1})$

- ▶ This requires positive definite H^*
- Can be viewed as an IS version of the Laplace approximation

Mixture Distributions

Suppose we have K importance distributions q_1, \ldots, q_K , we can combine them into a mixture of distributions with probability $\alpha_1, \ldots, \alpha_K$, $\sum_i \alpha_i = 1$

$$q(x) = \sum_{i=1}^{K} \alpha_i q_i(x)$$

- IS estimate $I_n^{\text{IS}} = \frac{1}{n} \sum_{i=1}^n h(x^{(i)}) \frac{f(x^{(i)})}{\sum_{j=1}^K \alpha_j q_j(x^{(i)})}$
- An alternative. Suppose $x^{(i)}$ came from component j(i), we could use

$$\frac{1}{n} \sum_{i=1}^{n} h(x^{(i)}) \frac{f(x^{(i)})}{q_{j(i)}(x^{(i)})}$$

Remark: This alternative is faster to compute, but has higher variance

Adaptive Importance Sampling

- Designing importance distribution directly would be challenging. A better way would be to adapt some candidate distribution to our task through a learning process
- ► To do that, we first need to pick a family *Q* of proposal distributions
- ▶ We have to choose a termination criterion, e.g., maximum steps, total number of observations, etc.
- ▶ Most importantly, we need a way to choose $q_{k+1} \in Q$ based on the observed information

Variance Minimization

- Suppose now we have a family of distributions (e.g., exponential family) $q_{\theta}(x) = q(x; \theta), \ \theta \in \Theta$
- ▶ Recall that the variance of IS estimate is

$$\frac{1}{n} \int_{\mathcal{X}} \frac{(h(x)f(x))^2}{q(x)} \, dx - I^2, \quad \text{therefore, we would like}$$

$$\theta = \operatorname*{arg\,min}_{\theta \in \Theta} \int_{\mathcal{X}} \frac{(h(x)f(x))^2}{q_{\theta}(x)} \ dx$$

► Variance based update

$$\theta^{(k+1)} = \underset{\theta \in \Theta}{\arg\min} \frac{1}{n_k} \sum_{i=1}^{n_k} \frac{(h(x^{(i)})f(x^{(i)}))^2}{q_{\theta}(x^{(i)})^2}, \quad x^{(i)} \sim q_{\theta^{(k)}}$$

However, the optimization may be hard.

Cross Entropy

▶ Consider an exponential family

$$q_{\theta}(x) = g(x) \exp(\theta^T x - A(\theta))$$

▶ Now, replace variance by KL divergence

$$D_{KL}(k_* \| q_{\theta}) = \mathbb{E}_{k_*} \log \left(\frac{k_*(x)}{q_{\theta}(x)} \right)$$

► We seek θ to minimize

$$D_{KL}(k_* || q_\theta) = \mathbb{E}_{k_*}(\log(k_*(x)) - \log(q(x;\theta)))$$

i.e., maximize

$$\mathbb{E}_{k_*}(\log(q(x;\theta)))$$

Cross Entropy

▶ Rewrite the negative cross entropy as

$$\mathbb{E}_{k_*}(\log(q(x;\theta))) = \mathbb{E}_q\left(\frac{\log(q(x;\theta))k_*(x)}{q(x)}\right)$$
$$= \frac{1}{I} \cdot \mathbb{E}_q\left(\frac{\log(q(x;\theta))h(x)f(x)}{q(x)}\right)$$

▶ Update θ to maximize the above

$$\begin{aligned} \theta^{(k+1)} &= \arg\max_{\theta} \frac{1}{n_k} \sum_{i=1}^{n_k} \frac{h(x^{(i)}) f(x^{(i)})}{q(x^{(i)}; \theta^{(k)})} \log(q(x^{(i)}; \theta)) \\ &= \arg\max_{\theta} \frac{1}{n_k} \sum_{i=1}^k H_i \log(q(x^{(i)}; \theta)) \\ &= \arg\max_{\theta} \frac{1}{n_k} \sum_{i=1}^k H_i (\theta^T x^{(i)} - A(\theta)) \end{aligned}$$

Cross Entropy

▶ The update often takes a simple moment matching form

$$\frac{\partial}{\partial \theta} A(\theta^{(k+1)}) = \frac{\sum_{i} H_i(x^{(i)})^T}{\sum_{i} H_i}$$

• Examples: • $q_{\theta} = \mathcal{N}(\theta, I)$ • $q_{\theta} = \mathcal{N}(\theta, \Sigma)$ • $q_{\theta} = \mathcal{N}(\theta, \Sigma)$ $\theta^{(k+1)} = \Sigma^{-1} \frac{\sum_{i} H_{i} x^{(i)}}{\sum_{i} H_{i}}$

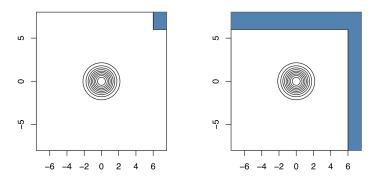
 Other exponential family updates are typically closed form functions of sample moments

Example

25/31

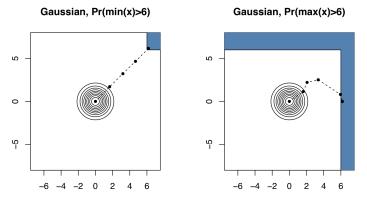
Gaussian, Pr(min(x)>6)

Gaussian, Pr(max(x)>6)



 $\theta_1 = (0,0)^T$ Take K = 10 steps with n = 1000 each

Example



For $\min(x)$, $\theta^{(k)}$ heads Northeast, which is OK. For $\max(x)$, $\theta^{(k)}$ heads North or East, and miss the other part completely, leading to underestimates of I by about 1/2

Control Variates

- ► The control variate strategy improves estimation of an unknown integral by relating the estimate to some correlated estimator with known integral
- ▶ A general class of unbiased estimators

$$I_{\rm CV} = I_{\rm MC} - \lambda (J_{\rm MC} - J)$$

where $\mathbb{E}(J_{\text{MC}}) = J$. It is easy to show I_{CV} is unbiased, $\forall \lambda$

• We can choose λ to minimize the variance of $I_{\rm CV}$

$$\hat{\lambda} = \frac{\mathbb{C}\mathrm{ov}(I_{\mathrm{MC}}, J_{\mathrm{MC}})}{\mathbb{V}\mathrm{ar}(J_{\mathrm{MC}})}$$

where the related moments can be estimated using samples from corresponding distributions

Control Variate for Importance Sampling

▶ Recall that IS estimator is

$$I_n^{\rm IS} = \frac{1}{n} \sum_{i=1}^n h(x^{(i)}) w(x^{(i)})$$

► Note that h(x)w(x) and w(x) are correlated and $\mathbb{E}w(x) = 1$, we can use the control variate $\bar{w} = \frac{1}{n} \sum_{i=1}^{n} w(x^{(i)})$

and the importance sampling control variate estimator is

$$I_n^{\rm ISCV} = I_n^{\rm IS} - \lambda(\bar{w} - 1)$$

 λ can be estimated from a regression of h(x)w(x) on w(x) as described before

Rao-Blackwellization

- ► Consider estimation of $I = \mathbb{E}(h(X, Y))$ using a random sample $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$ drawn from f
- ▶ Suppose the conditional expectation $\mathbb{E}(h(X,Y)|Y)$ can be computed. Using $\mathbb{E}(h(X,Y)) = \mathbb{E}(\mathbb{E}(h(X,Y)|Y))$, the *Rao-Blackwellized estimator* can be defined as

$$I_n^{\text{RB}} = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(h(x^{(i)}, y^{(i)}) | y^{(i)})$$

 Rao-Blackwellized estimator gives smaller variance than the ordinary Monte Carlo estimator

$$\begin{split} \mathbb{V}\mathrm{ar}(I_n^{\mathrm{MC}}) &= \frac{1}{n} \mathbb{V}\mathrm{ar}(\mathbb{E}(h(X,Y)|Y) + \frac{1}{n} \mathbb{E}(\mathbb{V}\mathrm{ar}(h(X,Y)|Y) \\ &\geq \mathbb{V}\mathrm{ar}(I_n^{\mathrm{RB}}) \end{split}$$

follows from the conditional variance formula

Rao-Blackwellization for Rejection Sampling

- ▶ Suppose rejection sampling stops at a random time M with acceptance of the *n*th draw, yielding $x^{(1)}, \ldots, x^{(n)}$ from all M proposals $y^{(1)}, \ldots, y^{(M)}$
- ▶ The ordinary Monte Carlo estimator can be expressed as

$$I_n^{\rm MC} = \frac{1}{n} \sum_{i=1}^M h(y^{(i)}) \mathbf{1}_{U_i \le w(y^{(i)})}$$

Rao-Blackwellization estimator

$$I_n^{\text{RB}} = \frac{1}{n} \sum_{i=1}^M h(y^{(i)}) t_i(Y)$$

where

$$t_i(Y) = \mathbb{E}(1_{U_i \le w(y^{(i)})} | M, y^{(1)}, \dots, y^{(M)})$$

30/31

References

- ▶ Hesterberg, T. C. (1988). Advances in importance sampling. PhD thesis, Stanford University.
- Kong, A. (1992). A note on importance sampling using standardized weights. Technical Report 348, University of Chicago.

