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Overview 2/31

▶ While Monte Carlo estimation is attractive for high
dimension integration, it may suffer from lots of problems,
such as rare events, and irregular integrands, etc.

▶ In this lecture, we will discuss various methods to improve
Monte Carlo approaches, with an emphasis on variance
reduction techniques



What’s Wrong with Simple Monte Carlo? 3/31

▶ The simple Monte Carlo estimator of
∫ b
a h(x)f(x)dx is

În =
1

n

n∑
i=1

h(x(i))

where x(1), x(2), . . . , x(n) are randomly sampled from f

▶ A potential problem is the mismatch of the concentration
of h(x)f(x) and f(x). More specifically, if there is a region
A of relatively small probability under f(x) that dominates
the integral, we would not get enough data from the
important region A by sampling from f(x)

▶ Main idea: Get more data from A, and then correct the
bias



Importance Sampling 4/31

▶ Importance sampling (IS) uses importance distribution
q(x) to adapt to the true integrands h(x)f(x), rather than
the target distribution f(x)

▶ By correcting for this bias, importance sampling can
greatly reduce the variance in Monte Carlo estimation

▶ Unlike the rejection sampling, we do not need the envelop
property

▶ The only requirement is that q(x) > 0 whenever

h(x)f(x) ̸= 0

▶ IS also applies when f(x) is not a probability density
function
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▶ Now we can rewrite I = Ef (h(x)) =
∫
X h(x)f(x) dx as

I = Ef (h(x)) =

∫
X

h(x)f(x) dx

=

∫
X
h(x)

f(x)

q(x)
q(x)dx

=

∫
X
(h(x)w(x))q(x)

= Eq(h(x)w(x))

where w(x) =
f(x)

q(x)
is the importance weight function



Importance Sampling 6/31

We can then approximate the original expectation as follows

▶ Draw samples x(1), . . . , x(n) from q(x)

▶ Monte Carlo estimate

IISn =
1

n

n∑
i=1

h(x(i))w(x(i))

where w(x(i)) = f(x(i))

q(x(i))
are called importance ratios.

▶ Note that, now we only require sampling from q and do not
require sampling from f



Examples 7/31

▶ We want to approximate a N (0, 1) distribution with t(3)
distribution

▶ We generate 500 samples and estimated I = E(x2) as 0.97,
which is close to the true value 1.



Mean and Variance of IS 8/31

▶ Let t(x) = h(x)w(x). Then Eq(t(X)) = I,X ∼ q

E(IISn ) =
1

n

n∑
i=1

E(t(x(i)) = I

▶ Similarly, the variance is

Varq(IISn ) =
1

n
Varq(t(X))

=
1

n

∫
X

(h(x)f(x))2

q(x)
dx− I2 (1)

=
1

n

∫
X

(h(x)f(x)− Iq(x))2

q(x)
dx (2)



Variance Does Matter 9/31

▶ Recall the convergence rate for Monte Carlo is

p

(
|În − I| ≤ σ√

nδ

)
≥ 1− δ, ∀δ

For IS, σ =
√

Varq(t(X)). A good importance distribution
q(x) would make Varq(t(X)) small.

▶ What can we learn from equations (1) and (2)?

▶ Optimal choice: q(x) ∝ h(x)f(x)

▶ q(x) near 0 can be dangerous

▶ Bounding
(h(x)f(x))2

q(x)
is useful theoretically
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Varq(t(X)) = 0
Gaussian h and f ⇒ Gaussian optimal q lies between.



Self-normalized Importance Sampling 11/31

▶ When f or/and q are unnormalized, we can esitmate the
expectation as follows

I =

∫
X h(x)f(x) dx∫

X f(x) dx
=

∫
X h(x)f(x)q(x) q

∗(x) dx∫
X

f(x)
q(x) q

∗(x) dx

where q∗(x) = q(x)/cq

▶ Monte Carlo estimate

ISNIS
n =

∑n
i=1 h(x

(i))w(x(i))∑n
i=1w(x

(i))
, x(i) ∼ q(x)

▶ Requires a stronger condition: q(x) > 0 whenever f(x) > 0



SNIS is Consistent 12/31

▶ Unfortunately, ISNIS
n is biased. However, the bias is

asymptotically negligible.

ISNIS
n =

1

n

n∑
i=1

h(x(i))f(x(i))/q(x(i))

/
1

n

n∑
i=1

f(x(i))/q(x(i))

p−→
∫
X
h(x)f(x)/q(x)q∗(x) dx

/∫
X
f(x)/q(x)q∗(x) dx

=

∫
X
h(x)f(x) dx

/∫
X
f(x) dx

= I



SNIS Variance 13/31

▶ We use delta method for the variance of SNIS, which is a
ratio estimate

Var(ISNIS
n ) ≈

σ2
q,sn

n
=

Eq(w(x)
2(h(x)− I)2)

n

▶ We can rewrite the variance σ2
q,sn as

σ2
q,sn =

∫
X

f(x)2

q(x)
(h(x)− I)2 dx

=

∫
X

(h(x)f(x)− If(x))2

q(x)
dx

▶ For comparison, σ2
q,is = Varq(t(X)) =

∫
X

(h(x)f(x)−Iq(x))2

q(x) dx

▶ No q can make σ2
q,sn = 0 (unless h is constant)



Optimial SNIS 14/31

▶ The optimal density for self-normalized importance
sampling has the form (Hesterberg, 1988)

q(x) ∝ |h(x)− I|f(x)

▶ Using this formula we find that

σ2
q,sn ≥ (Ef (|h(x)− I|))2

which is zero only for constant h(x)

▶ Note that the simple Monte Carlo has variance
σ2 = Ef ((h(x)− I)2), this means SNIS can not reduce the
variance by

σ2

σ2
q,sn

≤
Ef ((h(x)− I)2)

(Ef (|h(x)− I|))2



Importance Sampling Diagnostics 15/31

▶ The importance weights in IS may be problematic, we
would like to have a diagnostic to tell us when it happens.

▶ Unequal weighting raises variance (Kong, 1992). For IID Yi
with variance σ2 and fixed weight wi ≥ 0

Var
(∑

iwiYi∑
iwi

)
=

∑
iw

2
i σ

2

(
∑

iwi)2

▶ Write this as

σ2

ne
where ne =

(
∑

iwi)
2∑

iw
2
i

▶ ne is the effective sample size and ne ≪ n if the weights
are too imbalanced.



Importance Sampling vs Rejection Sampling 16/31

▶ Rejection Sampling requires bounded w(x) = f(x)/q(x)

▶ We also have to know a bound for the envelop distribution

▶ Therefore, importance sampling is generally easier to
implement

▶ IS and SNIS require us to keep track of weights

▶ Plain IS requires normalized p/q

▶ Rejection sampling could be sample inefficient (due to
rejections)



Exponential Tilting 17/31

▶ Consider that f(x) = p(x; θ0) is from a family of
distributions pθ(x), θ ∈ Θ

▶ A simple importance sampling distribution would be
q(x) = p(x; θ) for some θ ∈ Θ.

▶ Suppose f(x) belongs to an exponential family

f(x) = g(x) exp(η(θ0)
TT (x)−A(θ0))

▶ Use q(x) = g(x) exp(η(θ)TT (x)−A(θ)), the IS estimate is

IISn = exp(A(θ)−A(θ0))·
1

n

n∑
i=1

h(x(i)) exp((η(θ0)−η(θ))TT (x(i))



Hessian and Gaussian 18/31

▶ Suppose that we find the mode x∗ of k(x) = h(x)f(x)

▶ We can use Taylor approximation

log(k(x)) ≈ log(k(x∗))− 1

2
(x− x∗)TH∗(x− x∗)

k(x) ≈ k(x∗) exp

(
−1

2
(x− x∗)TH∗(x− x∗)

)
which suggests q(x) = N (x∗, (H∗)−1)

▶ This requires positive definite H∗

▶ Can be viewed as an IS version of the Laplace
approximation



Mixture Distributions 19/31

▶ Suppose we have K importance distributions q1, . . . , qK , we
can combine them into a mixture of distributions with
probability α1, . . . , αK ,

∑
i αi = 1

q(x) =

K∑
i=1

αiqi(x)

▶ IS estimate IISn = 1
n

∑n
i=1 h(x

(i)) f(x(i))∑K
j=1 αjqj(x(i))

▶ An alternative. Suppose x(i) came from component j(i), we
could use

1

n

n∑
i=1

h(x(i))
f(x(i))

qj(i)(x(i))

Remark: This alternative is faster to compute, but has
higher variance



Adaptive Importance Sampling 20/31

▶ Designing importance distribution directly would be
challenging. A better way would be to adapt some
candidate distribution to our task through a learning
process

▶ To do that, we first need to pick a family Q of proposal
distributions

▶ We have to choose a termination criterion, e.g., maximum
steps, total number of observations, etc.

▶ Most importantly, we need a way to choose qk+1 ∈ Q based
on the observed information



Variance Minimization 21/31

▶ Suppose now we have a family of distributions (e.g.,
exponential family) qθ(x) = q(x; θ), θ ∈ Θ

▶ Recall that the variance of IS estimate is

1

n

∫
X

(h(x)f(x))2

q(x)
dx− I2, therefore, we would like

θ = argmin
θ∈Θ

∫
X

(h(x)f(x))2

qθ(x)
dx

▶ Variance based update

θ(k+1) = argmin
θ∈Θ

1

nk

nk∑
i=1

(h(x(i))f(x(i)))2

qθ(x(i))2
, x(i) ∼ qθ(k)

However, the optimization may be hard.



Cross Entropy 22/31

▶ Consider an exponential family

qθ(x) = g(x) exp(θTx−A(θ))

▶ Now, replace variance by KL divergence

DKL(k∗∥qθ) = Ek∗ log

(
k∗(x)

qθ(x)

)
▶ We seek θ to minimize

DKL(k∗∥qθ) = Ek∗(log(k∗(x))− log(q(x; θ)))

i.e., maximize
Ek∗(log(q(x; θ)))



Cross Entropy 23/31

▶ Rewrite the negative cross entropy as

Ek∗(log(q(x; θ))) = Eq

(
log(q(x; θ))k∗(x)

q(x)

)
=

1

I
· Eq

(
log(q(x; θ))h(x)f(x)

q(x)

)
▶ Update θ to maximize the above

θ(k+1) = argmax
θ

1

nk

nk∑
i=1

h(x(i))f(x(i))

q(x(i); θ(k))
log(q(x(i); θ))

= argmax
θ

1

nk

k∑
i=1

Hi log(q(x
(i); θ))

= argmax
θ

1

nk

k∑
i=1

Hi(θ
Tx(i) −A(θ))



Cross Entropy 24/31

▶ The update often takes a simple moment matching form

∂

∂θ
A(θ(k+1)) =

∑
iHi(x

(i))T∑
iHi

▶ Examples:
▶ qθ = N (θ, I)

θ(k+1) =

∑
i Hix

(i)∑
i Hi

▶ qθ = N (θ,Σ)

θ(k+1) = Σ−1

∑
i Hix

(i)∑
i Hi

▶ Other exponential family updates are typically closed form
functions of sample moments
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θ1 = (0, 0)T

Take K = 10 steps with n = 1000 each



Example 26/31

For min(x), θ(k) heads Northeast, which is OK.
For max(x), θ(k) heads North or East, and miss the other part
completely, leading to underestimates of I by about 1/2



Control Variates 27/31

▶ The control variate strategy improves estimation of an
unknown integral by relating the estimate to some
correlated estimator with known integral

▶ A general class of unbiased estimators

ICV = IMC − λ(JMC − J)

where E(JMC) = J . It is easy to show ICV is unbiased, ∀λ
▶ We can choose λ to minimize the variance of ICV

λ̂ =
Cov(IMC, JMC)

Var(JMC)

where the related moments can be estimated using samples
from corresponding distributions



Control Variate for Importance Sampling 28/31

▶ Recall that IS estimator is

IISn =
1

n

n∑
i=1

h(x(i))w(x(i))

▶ Note that h(x)w(x) and w(x) are correlated and
Ew(x) = 1, we can use the control variate

w̄ =
1

n

n∑
i=1

w(x(i))

and the importance sampling control variate estimator is

IISCV
n = IISn − λ(w̄ − 1)

λ can be estimated from a regression of h(x)w(x) on w(x)
as described before



Rao-Blackwellization 29/31

▶ Consider estimation of I = E(h(X,Y )) using a random
sample (x(1), y(1)), . . . , (x(n), y(n)) drawn from f

▶ Suppose the conditional expectation E(h(X,Y )|Y ) can be
computed. Using E(h(X,Y )) = E(E(h(X,Y )|Y )), the
Rao-Blackwellized estimator can be defined as

IRB
n =

1

n

n∑
i=1

E(h(x(i), y(i))|y(i))

▶ Rao-Blackwellized estimator gives smaller variance than
the ordinary Monte Carlo estimator

Var(IMC
n ) =

1

n
Var(E(h(X,Y )|Y ) +

1

n
E(Var(h(X,Y )|Y )

≥ Var(IRB
n )

follows from the conditional variance formula



Rao-Blackwellization for Rejection Sampling 30/31

▶ Suppose rejection sampling stops at a random time M with
acceptance of the nth draw, yielding x(1), . . . , x(n) from all
M proposals y(1), . . . , y(M)

▶ The ordinary Monte Carlo estimator can be expressed as

IMC
n =

1

n

M∑
i=1

h(y(i))1Ui≤w(y(i))

▶ Rao-Blackwellization estimator

IRB
n =

1

n

M∑
i=1

h(y(i))ti(Y )

where
ti(Y ) = E(1Ui≤w(y(i))|M,y(1), . . . , y(M))
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