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▶ In the Bayesian paradigm, estimation, hypothesis testing,
and model selection are special cases of decision problems.

▶ Decision theory provides a mathematical framework for
making decision under uncertainty; that is, when the
outcome of an event is not known.

▶ However, we assume that we know our loss (or gain) when
one of the possible outcomes occur.
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▶ We use V to denote the set of all possible values, v, for
unknown variables. We refer to V as the outcome space.

▶ V could be the value of future observations. For example,
V = {Head,Tail} when you are tossing a coin.

▶ Or it could be the value of a parameter in a model. For
example V = R, when we want to estimate µ, the mean of
a normal distribution.

▶ We present the set of all possible actions, a, as A. We refer
to A as the action space.

▶ If we are predicting the outcome of the next coin toss,
A = {Head,Tail}; if we want to estimate µ (i.e., point
estimation), our action space would be A = R.

▶ For hypothesis testing, we can define our action A = {0, 1},
where 0 means do not reject the null hypothesis H0 : µ ≤ 0
and 1 means rejecting it.
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▶ We define utility as a function u = U(v, a) that maps the
product of outcome space and action space to a real
number u ∈ R representing how much we gain if we choose
action a and the outcome v occurs.

▶ It is more common to choose a loss function instead of
utility (e.g., negative of utility) representing our loss when
we choose action a and the outcome v occurs.

▶ In the coin tossing experiment, the loss function, L(v, a)
can be defined as follows

L(Head,Head) = L(Tail,Tail) = 0

L(Head,Tail) = L(Tail,Head) = 1

▶ This is known as 0-1 loss function.
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▶ Now, assume that we have observed data y, for example,

y = HHTHTHHT

which is the outcome from a sequence of coin tossing.
Using this data, we want to make a decision about what
the outcome of the next toss would be (or what is θ, the
probability of head for this coin).

▶ The tool for making decision is called decision rule, and it’s
denoted as δ(y). Note that δ is a function of data only.

▶ For example, given y, we might define our decision rule for
guessing what would be the outcome of the next toss as
follows

δ(y) =

{
Head if the frequency of Heads is ≥ 0.5
Tail if the frequency of Heads is < 0.5.
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▶ Posterior risk for a decision rule δ is

r(δ|y) =
∫
V
L(v, δ(y))p(v|y)dv

▶ Note that we replaced the action a with the decision rule
δ(y) since our action now depends on our decision rule
which itself depends on the observed data.

▶ Also, note that p(v|y) is the posterior predictive probability
if v is future observation (i.e., what is the outcome of the
next toss), or it is posterior probability if v is the parameter
of a model (i.e., µ, the mean of a normal distribution).
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▶ The expected loss principle: In deciding between different
rules, choose the one with the smallest posterior risk.

▶ Bayes action δ∗(y) is the action that minimizes the
posterior risk: r(δ∗|y) ≤ r(δ|y), ∀y and δ.

▶ In theory, this is all we need to know for all sorts of
decision problems (e.g., prediction, point estimation, and
hypothesis setting).

▶ For example, as we will see later, if we have a simple 0-1
loss function and a discrete action space such as the coin
tossing example, the Bayes action is choosing the mode of
the posterior distribution p(v|y).
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▶ Many decision problems in statistics deal with estimating
the parameter of a probability model (e.g., the mean of a
normal model, or the coefficients in a linear regression
model), i.e. we have V = θ.

▶ A possible loss function is the squared error loss function:
L(θ, a) = ∥θ − a∥2.

▶ In general, the Bayes action for this specific loss function is
to choose the mean of the posterior distribution

Eθ|y(L(θ, a)) = Eθ|y(θ
2−2aθ+a2) = Eθ|y(θ

2)−2aEθ|y(θ)+a2

We take the derivative with respect to a and set it to zero:

−2E(θ) + 2a = 0 ⇒ a = Eθ|y(θ)

▶ That’s the reason we usually use posterior mean for point
estimate.
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▶ Now suppose we want to use the absolute error loss
function: L(θ, a) = |θ − a|.

▶ Therefore, we need to minimize Eθ|y(|θ − a|).
▶ Using Leibniz’s rule

∂

∂t

∫ b(t)

a(t)
f(x, t)dx =

∫ b(t)

a(t)

∂

∂t
f(x, t)dx−f(a(t), t)a′(t)+f(b(t), t)b′(t)

we have

∂

∂a
Eθ|y(|θ − a|) = ∂

∂a

∫ a

−∞
(a− θ)f(θ|y)dθ + ∂

∂a

∫ ∞

a
(θ − a)f(θ|y)dθ

=

∫ a

−∞
f(θ|y)dθ −

∫ ∞

a
f(θ|y)dθ

▶ Bayes estimator in this case is the posterior median.
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▶ Given a prior distribution π, it is also possible to define the
integrated risk, which is the frequentist risk averaged over
the values of θ according to their prior distribution

r(π, δ) = EπR(θ, δ) =

∫
Θ

∫
Y
L(θ, δ(y))p(y|θ)dy π(θ)dθ

▶ This introduces a total ordering on the set of estimators,
allowing for the direct comparison of estimators.

▶ Bayes Rule. A Bayes rule is a function δπ, that minimizes
the integrated risk.
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▶ Another way of deriving the Bayes estimator

r(π, δ) =

∫
Θ

∫
Y
L(θ, δ(y))p(y|θ)dy π(θ)dθ

=

∫
Y

∫
Θ
L(θ, δ(y))p(θ|y)dθ p(y)dy

=

∫
Y
r(δ|y)p(y)dy

▶ Note that the last equation is the posterior risk averaged
over the marginal distribution of y. This implies that the
Bayes rule can be obtained by taking the Bayes estimator
for each particular y!

▶ The value r(π) = r(π, δπ) is called the Bayes risk.
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▶ An estimator δ0 is inadmissible if there exist δ1 which
dominates δ0, that is R(θ, δ0) ≥ R(θ, δ1) and, for at least
one value θ0 of the parameter, R(θ0, δ0) > R(θ0, δ1).
Otherwise, δ0 is said to be admissible.

▶ If a prior distribution π is strictly positive on Θ, with finite
Bayes risk and the risk function, R(θ, δ), is a continuous
function of θ for every δ, the Bayes estimator δπ is
admissible.

▶ Sketch of proof. Suppose δπ is inadmissible and consider δ′

which uniformly dominates δπ. Then R(θ, δ′) ≤ R(θ, δπ)
and, in an open set C of Θ, R(θ, δ′) < R(θ, δπ). Hence

r(π, δ′) =

∫
Θ
R(θ, δ′)π(θ)dθ <

∫
Θ
R(θ, δπ)π(θ)dθ = r(π, δπ),

which is impossible.
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▶ Another type of decision problem, as we mentioned above,
is hypothesis testing.

▶ If we want to choose between two hypothesis H0 : θ ∈ Θ0

and H1 : θ /∈ Θ0, all we need to do again is to choose the
hypothesis whose posterior risk is smaller.

▶ Let’s assume a simple 0-1 loss function, that is, the penalty
associated with an estimate δ is 0 if the answer is correct
and 1 otherwise.

L(θ, δ) =

{
1− δ if θ ∈ Θ0

δ otherwise

▶ The Bayes estimator is

δ(y) =

{
1 if p(θ ∈ Θ0|y) > p(θ /∈ Θ0|y)
0 otherwise.
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▶ In general, the loss due to type I error (i.e., rejecting H0

when it is true) is different from that of type II error (i.e.,
accepting H0 when it is not true).

▶ In this case, although we might not choose the one with a
higher posterior probability, the principle of choosing the
one with a smaller posterior risk remains as before.

▶ Let’s assume the loss due to type I error is 19 and the loss
due to type II error is 1. We accept H1 if its posterior risk
is smaller than the posterior risk of H0,

0× p(H1|y) + 19× p(H0|y) < 0× p(H0|y) + 1× p(H1|y)
p(H0|y) < 1/20 = 0.05

▶ That is, for this specific loss function, we reject the null
hypothesis if its posterior probability is less than 0.05
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▶ Consider x ∼ N (θ, 1) and the null hypothesis H0 : θ ≤ 0 is
tested against the alternative hypothesis H1 : θ > 0. This
testing problem is an estimation problem if we consider the
estimation of the indicator function 1H0(θ).

▶ Under the quadratic loss (1H0(θ)− δ(x))2, we can propose
the following estimator

Pvalue(x) = p(X > x) = 1− Φ(x)

▶ This is also a generalized Bayesian estimator under
Lebesgue measure and quadratic loss

δπ(x) = Eθ|x(1H0(θ)) = p(θ < 0|x)
= p(θ − x < −x|x) = 1− Φ(x)

Therefore, p-value in this case is admissible.
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▶ Now let’s consider a simple hypothesis testing problem
formalized as a decision problem between two possible
models: p(y|θ0) and p(y|θ1). That is, we think the model
parameter θ could take one of the two possible values.

▶ A priori, we believe the probabilities of θ = θ0 and θ = θ1
are p(θ0) and p(θ1) respectively.

▶ With a simple 0-1 loss function, we choose the model with
a higher posterior probability. We could compare posterior
probabilities by presenting them in the form of a posterior
odds as follows

p(θ0|y)
p(θ1|y)

=
p(θ0)p(y|θ0)/p(y)
p(θ1)p(y|θ1)/p(y)

=
p(θ0)p(y|θ0)
p(θ1)p(y|θ1)

That is, the posterior odds is the product of the prior odds
and the likelihood ratio.
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▶ Traditionally, statisticians avoid expressing a prior odds in
favor of either alternatives (especially if we are not making
a decision, rather, we are reporting our findings):
p(θ0)/p(θ1) = 1, and rely only on

p(y|θ0)
p(y|θ1)

which is known as Bayes factor.

▶ This is analogous (not the same in general settings though)
to the likelihood ratio test that is commonly used in the
frequentist framework.

▶ When H0 and H1 are not single point hypothesis, the
Bayes factor is defined in general as

BF(H0;H1) =
p(y|H0)

p(y|H1)
=

∫
p(y|θ0, H0)p(θ0|H0)dθ0∫
p(y|θ1, H1)p(θ1|H1)dθ1
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▶ We can also use BF to choose between two alternative
models

BF12 =
p(y|M1)

p(y|M2)

▶ In general, when the models are specified in terms of
unknown parameters, θ, we have

BF12 =

∫
p(y|θ1,M1)p(θ1|M1)dθ1∫
p(y|θ2,M2)p(θ2|M2)dθ2

▶ In this case, BF is the ratio of prior predictive distributions.
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▶ Generally speaking, the Bayes factor is a summary of the
evidence provided by the data, in favor of one scientific
theory, represented by a statistical model, as opposed to
another.

▶ Jeffreys (1961) provided interpretive ranges for the BF
analogous to what frequentist use for p-values:
▶ 1 < BF < 3: slight evidence
▶ 3 < BF < 10: positive evidence
▶ BF > 10: strong evidence

▶ Using the BF has some difficulties. For example, in general
we cannot use improper prior distributions.

▶ Other alternatives such as fractional Bayes Factor
(O’Hagan 1995) are more appropriate (this is beyond the
scope of this course, but you can refer to O’Hagan’s paper
for more details).
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▶ Hemophilia is a disease that exhibits X-chromosome-linked
recessive inheritance. Consider a woman who has an
affected brother and unaffected father.

▶ Let θ be an indicator that the woman is a carrier of the
gene. Based on the information thus far, we may assume
p(θ = 1) = p(θ = 0) = 1

2 .

▶ Suppose she has two sons, neither of whom is affected, i.e.,
y1 = y2 = 0. Now consider the two competing models
H1 : θ = 1, and H2 : θ = 0.

▶ The prior odds are p(H2)/p(H1) = 1, and the Bayes factor
of the data is

p(y|H2)

p(y|H1)
=

1.0

0.5× 0.5
= 4

▶ The posterior odds are thus p(H2|y)/p(H1|y) = 4.
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▶ For many data analyses, explicit benefit or cost information
is not available, and the predictive performance of a model
is assessed by generic scoring functions and rules.

▶ In point prediction, scoring functions are often used. One
typical example is mean square error:

1

n

n∑
i=1

(yi − E(yi|θ))2

(or a weighted version according to the variance). Easy to
compute and interpret, but could be less appropriate for
non-Gaussian models.

▶ In probabilistic prediction, people often use score rules to
account for the uncertainty. One commonly used rule is the
log predictive density log p(y|θ), which is proportional to
the mean square error for Gaussian models with constant
variance.
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▶ Let ỹi be a new data point, the out-of-sample predictive fit
is

log p(ỹi|y) = logEθ|y(p(ỹi|θ)) = log

∫
p(ỹi|θ)p(θ|y)dθ.

Here p(ỹi|y) is the predictive density for ỹi induced by the
posterior distribution p(θ|y).

▶ Let f(y) be the true data distribution. We can define the
expected out-of-sample log predictive density as

elpd = Ef (log p(ỹi|y)) =
∫

log p(ỹi|y)f(ỹi)dỹi

▶ One can also define a measure of predictive accuracy for n
data points

elppd =

n∑
i=1

Ef (log p(ỹi|y)) (1)
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▶ Since f(y) is generally unknown, we need to find an
estimate for it. A typical choice is to use the observed data

lppd =

n∑
i=1

log

∫
p(yi|θ)p(θ|y)dθ

▶ In practice, we can evaluate the expectation using draws
from p(θ|y), θ1, . . . , θS

computed lppd =

n∑
i=1

log

(
1

S

S∑
s=1

p(yi|θs)

)

▶ the lppd of observed data y is an overestimate of the elppd
for future data. We need to apply some sort of bias
correction to get a reasonable estimate of (1).
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▶ Deviance (the log predictive density of the data given a
point estimate of the fitted model) is defined as

D(y, θ) = −2 log p(y|θ)

which is a measure of discrepancy (i.e., lack of fit, lower is
better).

▶ The deviance measure as described above, depends on both
y and θ. If we want to use a measure that depends only on
y, we can integrate the deviance over the posterior

Dpost-avg = Eθ|y(D(y, θ))

▶ We can estimate this by using simulated samples from the
posterior distribution

D̂post-avg(y) ≈
1

L

L∑
ℓ=1

D(y, θℓ)
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▶ Deviance is especially useful when we compare nested
models; that is, when we are deciding whether to include
the predictor x in the model or not, i.e.:

M0 : y = β0 + ϵ

M1 : y = β0 + β1x+ ϵ

▶ However, we could decrease deviance by arbitrarily
increasing the complexity of model, for example, by adding
more predictors into the model.

▶ In general, it is recommended to use more complex models
only when they result in substantial (i.e., statistically
significant) improvement in performace (i.e., substantial
decrease in deviance).

▶ The above principle is widely known as Occam’s razor:
“everything equal, we should use the simplest solution”.
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▶ When we are relying on deviance, we need a measurement
that accounts for the trade-off between complexity and
goodness-of-fit.

▶ In a decision model, this could be done by using a loss
function that penalizes larger models.

▶ A simple measure, which does this automatically, is called
deviance information criterion (DIC) defined as follows
(Spiegelhalter et al., 2002)

DIC = D̂post-avg(y) + pDIC

▶ pDIC is called effective number of parameters and is a
measure of complexity

pDIC = D̂post-avg(y)−Dθ̂Bayes
(y)
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▶ Here, Dθ̂(y) is the deviance when we first average posterior
parameters and then calculate deviance (as opposed to
integrating deviance over posterior parameters).

▶ Therefore, we can obtain DIC as follows

DIC = 2D̂post-avg(y)−Dθ̂Bayes
(y)

= Dθ̂Bayes
(y) + 2pDIC

▶ Caution! Although it is easy to use DIC for model
evaluation, remember that the best approach is still to use
problem specific loss function, and based on the posterior
risk, to find the optimal decision rule. Use DIC only when
you don’t have a better loss function or you simply want to
report your findings.
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▶ Akaike Information Criterion (AIC):

AIC = −2 log p(y|θ̂mle) + 2k

where k is the number of parameters in the model.

▶ Bayesian Information Criterion (BIC)

BIC = −2 log p(y|θ̂mle) + k log n

▶ BIC penalizes more on model complexity when n is large.

▶ See Gelman et al. (2003) for more criteria.
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▶ We use a simple linear regression for example where vote
share y is predicted from economic performance x solely as
follows

yi ∼ N (a+ bxi, σ
2), i = 1, . . . , n

with a noninformative prior p(a, b, σ2) ∝ σ−2.

▶ The conditional posterior of β = (a, b) is

β|σ2, y ∼ N (β̂, Vβσ
2)

where β̂ = (XTX)−1XT y, Vβ = (XTX)−1.

▶ The marginal posterior distribution of σ2 is

σ2|y ∼ Inv-χ2(n− 2, s2), s2 =
1

n− 2
(y −Xβ̂)T (y −Xβ̂)



Example: Forecasting Presidential Elections 30/37

▶ For the data at hand, n = 15, s = 3.6, β̂ = (45.9, 3.2), and

Vβ =

(
0.21 −0.07
−0.07 0.04

)
.

▶ AIC. The MLE of (â, b̂, σ̂) is (45.9, 3.2, 3.6).

AIC = −2

15∑
i=1

logN (yi|xTi β̂, s2) + 2× 3 = 86.6

▶ BIC. Similarly,

BIC = −2

15∑
i=1

logN (yi|xTi β̂, s2) + log(15)× 3 = 88.7

▶ DIC. Using MCMC samples, the estimated DIC is 87.0.
The estimate of pDIC is 3, which is exactly the number of
parameters in the model.
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▶ One of the commonly used exemplar dataset for logistic
regression is the Titanic dataset.

▶ We consider two nested logistic regression models: Model
M0, which does not include the social class predictor (i.e.,
only the intercept, age and gender are included), and
Model M1, which includes the social class as well as other
variables.
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▶ We fit these two models separately and present the results
in the following table

▶ As we can see, M1 has a smaller DIC, and therefore,
provides a better fit. This could be interpreted as
statistical significance of social class.
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▶ We can also compare the posterior distribution of deviance
for different models. The following graph shows the trace
plot of deviance for models M0 and M1.
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▶ When the parameter space is finite, Θ = {θ0, θ1, . . . , θk}
with prior pj = p(θ = θj) > 0, then given n observed
samples from p(y|θ0), we can show that

lim
n→∞

p(θ = θ0|y) = 1 lim
n→∞

p(θ = θj |y) = 0 ∀j ̸= 0

▶ To see this, consider the log-posterior odds with respect to
θ0 (i.e., true value of model parameter)

log

(
p(θ|y)
p(θ0|y)

)
= log

(
p(θ)

p(θ0)

)
+

n∑
i=1

log

(
p(yi|θ)
p(yi|θ0)

)
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▶ For θ ̸= θ0, the expectation of each summand in the second
term is negative.

Eyi|θ0 log

(
p(yi|θ)
p(yi|θ0)

)
= C < 0, ∀i

▶ So the right hand side → −∞ as n → ∞. Therefore,

lim
n→∞

p(θ = θj |y) = 0 ∀j ̸= 0

▶ Because the sum of probabilities is 1,

lim
n→∞

p(θ = θ0|y) = 1
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▶ When the parameter space is continuous, we can show that
the posterior probability of θ becomes more and more
concentrate about θ0 as n → ∞.

▶ Theorem. If θ is defined on a compact set Θ and A is a
neighborhood of θ0 with nonzero prior probability, then
Pr(θ ∈ A|y) → 1 as n → ∞.

▶ Since Θ is compact, we can find a finte subcovering of it,
with A being the only neighborhood that includes θ0. The
proof then simply follows the discrete case.

▶ Moreover, we can show that (under some regularity
conditions) for large n, the posterior is asymptotically
normal

θ|y asy∼ N (θ̂n, I(θ̂n)
−1)

where θ̂n is the MLE and I(θ̂n) is the observed Fisher
information.
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