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▶ We saw previously that in certain situations, the posterior
distribution has a closed form (e.g., when the prior is
conjugate), and the integrals are tractable.

▶ For many other problems, however, finding the posterior
distribution and obtaining the expectation are far from
trivial.

▶ Remember that even for the case of simple normal
distribution with two parameters, the posterior didn’t have
a closed form unless we were willing to use noninformative
priors or tie the variance of the mean to the variance of the
data.

▶ In the following few lectures, we focus on problems where
the posterior distribution is not analytically tractable.

▶ For this, we need to learn about Monte Carlo methods and
Markov chain stochastic processes.
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▶ Suppose we are interested in estimating I(h) =
∫ b
a h(x)dx

▶ If we can draw iid samples, x(1), x(2), . . . , x(n) uniformly
from (a, b), we can approximate the integral as

În = (b− a)
1

n

n∑
i=1

h(x(i))

▶ Note that we can think about the integral as

(b− a)

∫ b

a
h(x) · 1

b− a
dx

where 1
b−a is the density of Uniform(a, b)
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▶ In general, we are interested in integrals of the form∫
X h(x)f(x)dx, where f(x) is a probability density function

▶ Analogous to the above argument, we can approximate this
integral (or expectation) by drawing iid samples
x(1), x(2), . . . , x(n) from the density f(x) and then

Î =
1

n

n∑
i=1

h(x(i))

▶ Based on the law of large numbers, we know that

lim
n→∞

În
p−→ I

▶ And based on the central limit theorem

√
n(În − I) → N (0, σ2), σ2 = Var(h(X))
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▶ Let h(x) = 1B(0,1)(x), then π = 4
∫
[−1,1]2 h(x) ·

1
4 dx

▶ Monte Carlo estimate of π

În =
4

n

n∑
i=1

1B(0,1)(x
(i))

x(i) ∼ Uniform([−1, 1]2)
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▶ Convergence rate for Monte Carlo: O(n−1/2)

p

(
|În − I| ≤ σ√

nδ

)
≥ 1− δ, ∀δ

often slower than quadrature methods (O(n−2) or better)

▶ However, the convergence rate of Monte Carlo does not
depend on dimensionality

▶ On the other hand, quadrature methods are difficult to
extend to multidimensional problems, because of the curse
of dimensionality. The actual convergence rate becomes
O(n−k/d), for any order k method in dimension d

▶ This makes Monte Carlo strategy very attractive for high
dimensional problems
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▶ Monte Carlo methods require sampling a set of points
chosen randomly from a probability distribution

▶ For simple distribution f(x) whose inverse cumulative
distribution functions (CDF) exists, we can sampling x
from f as follows

x = F−1(u), u ∼ Uniform(0, 1)

where F−1 is the inverse CDF of f

▶ Proof.

p(a ≤ x ≤ b) = p(F (a) ≤ u ≤ F (b)) = F (b)− F (a)
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▶ Exponential distribution: f(x) = θ exp(−θx). The CDF is

F (a) =

∫ a

0
θ exp(−θx) = 1− exp(−θa)

therefore, x = F−1(u) = −1
θ log(1− u) ∼ f(x). Since 1− u

also follows the uniform distribution, we often use
x = −1

θ log(u) instead

▶ Normal distribution: f(x) = 1√
2π

exp(−x2

2
). Box-Muller

Transform

X =
√
−2 logU1 cos 2πU2

Y =
√

−2 logU1 sin 2πU2

where U1 ∼ Uniform(0, 1), U2 ∼ Uniform(0, 1)
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▶ Assume Z = (X,Y ) follows the standard bivariate normal
distribution. Consider the following transform

X = R cosΘ, Y = R sinΘ

▶ From symmetry, clearly Θ follows the uniform distribution
on the interval (0, 2π) and is independent of R

▶ What distribution does R follow? Let’s take a look at its
CDF

p(R ≤ r) = p(X2 + Y 2 ≤ r2)

=
1

2π

∫ r

0
t exp(− t2

2
)dt

∫ 2π

0
dθ = 1− exp(−r2

2
)

Therefore, using the inverse CDF rule, R =
√
−2 logU1
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▶ If it is difficult or computationally intensive to sample
directly from f(x) (as described above), we need to use
other strategies

▶ Although it is difficult to sample from f(x), suppose that
we can evaluate the density at any given point up to a
constant f(x) = f∗(x)/Z, where Z could be unknown
(remember that this make Bayesian inference convenient
since we usually know the posterior distribution only up to
a constant)

▶ Furthermore, assume that we can easily sample from
another distribution with the density g(x) = g∗(x)/Q,
where Q is also a constant
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▶ Now we choose the constants c such that cg∗(x) becomes
the envelope (blanket) function for f∗(x):

cg∗(x) ≥ f∗(x), ∀x

▶ Then, we can use a strategy known as rejection sampling in
order to sample from f(x) indirectly

▶ The rejection sampling method works as follows

1. draw a sample x from g(x)
2. generate u ∼ Uniform(0, 1)

3. if u ≤ f∗(x)
cg∗(x) we accept x as the new sample, otherwise,

reject x (discard it)
4. return to step 1



Rejection Sampling 13/38

Rejection sampling generates samples from the target density,
no approximation involved

p(XR ≤ y) = p(Xg ≤ y|U ≤ f∗(Xg)

cg∗(Xg)
)

= p(Xg ≤ y, U ≤ f∗(Xg)

cg∗(Xg)
)/p(U ≤ f∗(Xg)

cg∗(Xg)
)

=

∫ y
−∞

∫ f∗(z)
cg∗(z)
0 dug(z)dz∫∞

−∞
∫ f∗(z)

cg∗(z)
0 dug(z)dz

=

∫ y

−∞
f(z)dz
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▶ Assume that it is difficult to sample from the Beta(3, 10)
distribution (this is not the case of course)

▶ We use the Uniform(0, 1) distribution with
g(x) = 1, ∀x ∈ [0, 1], which has the envelop proporty:
4g(x) > f(x), ∀x ∈ [0, 1]. The following graph shows the
result after 3000 iterations
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Rejection sampling becomes challenging as the dimension of x
increases. A good rejection sampling algorithm must have three
properties

▶ It should be easy to construct envelops that exceed the
target everywhere

▶ The envelop distributions should be easy to sample

▶ It should have a low rejection rate
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▶ When evaluating f∗ is computationally expensive, we can
improve the simulation speed of rejection sampling via
squeezed rejection sampling

▶ Squeezed rejection sampling reduces the evaluation of f via
a nonnegative squeezing function s that does not exceed f∗

anywhere on the support of f : s(x) ≤ f∗(x), ∀x
▶ The algorithm proceeds as follows:

1. draw a sample x from g(x)
2. generate u ∼ Uniform(0, 1)

3. if u ≤ s(x)
cg∗(x) , we accept x as the new sample, return to step

1
4. otherwise, determine whether u ≤ f∗(x)

cg∗(x) . If this inequality

holds, we accept x as the new sample, otherwise, we reject
it.

5. return to step 1



Squeezed Rejection Sampling 17/38

Remark: The proportion of iterations in which evaluation of f
is avoided is

∫
s(x)dx/

∫
e(x)dx
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▶ For a continuous, differentiable, log-concave density on a
connected region of support, we can adapt the envelope
construction (Gilks and Wild, 1992)

▶ Let T = {x1, . . . , xk} be the set of k starting points.

▶ We first sample x∗ from the piecewise linear upper envelop
e(x), formed by the tangents to the log-likelihood ℓ at each
point in Tk.



Adaptive Rejection Sampling 18/38

▶ To sample from the upper envelop, we need to transform
from log space by exponentiating and using properties of
the exponential distribution

▶ We then either accept or reject x∗ as in squeeze rejection
sampling, with s(x) being the piecewise linear lower bound
formed from the chords between adjacent points in T

▶ Add x∗ to T whenever the squeezing test fails.
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▶ For more complex distributions, we can use a Markov chain
process to generate samples (which would not be
independent anymore) and approximate the target
distribution.

▶ This method is known as Markov chain Monte Carlo
(MCMC) technique.

▶ However, we first need to discuss Markov chains and
stochastic processes in general.
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▶ Stochastic processes is a family of random variables,
usually indexed by a set of numbers (time). A discrete time
stochastic process is simply a sequence of random variables,
X0, X1, . . . , Xn defined on the same probability space

▶ One of the simplest stochastic processes (and one of the
most useful) is the simple random walk

▶ Consider a simple random walk on a graph G = (Ω, E).
The stochastic process starts from an initial position
X0 = x0 ∈ Ω, and proceeds following a simple rule:

p(Xn+1|Xn = xn) ∼ Discrete(N (xn)), ∀n ≥ 0

where N (xn) denotes the neighborhood of xn
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▶ Consider a sequence of iid random variables {Zi} such that
p(Zi = 1) = p, p(Zi = −1) = 1− p. A one dimension
random work process can be defined as
X0 = a, Xn = a+ Z1 + · · ·+ Zn.

▶ The distribution of Xn

p(Xn = a+ k) =

(
n

(n+ k)/2

)
p(n+k)/2(1− p)(n−k)/2
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Two random walks on a 20× 20 grid graph
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▶ The above simple random walk is a special case of another
well-known stochastic process called Markov chains

▶ A Markov chain represents the stochastic movement of
some particle in the state space over time. The particle

initially starts from state i with probability π
(0)
i , and after

that moves from the current state i at time t to the next
state j with probability pij(t)

▶ A Markov chain has three main elements:

1. A state space S
2. An initial distribution π(0) over S
3. Transition probabilities pij(t) which are non-negative

numbers representing the probability of going from state i
to j, and

∑
j pij(t) = 1.

▶ When pij(t) does not depend on time t, we say the Markov
chain is time-homegenous
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▶ Chain rule (in probability)

p(Xn = xn, . . . , X0 = x0) =

n∏
i=1

p(Xi = xi|X<i = x<i)

▶ Markov property

p(Xi+1 = xi+1|Xi = xi, . . . , X0 = x0) = p(Xi+1 = xi+1|Xi = xi)

▶ Joint probability with Markov property

p(Xn = xn, . . . , X0 = x0) =
n∏

i=1

p(Xi = xi|Xi−1 = xi−1)

fully determined by the transition probabilities
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▶ Consider the 2000 US presidential election with three
candidates: Gore, Bush and Nader (just an illustrative
example and does not reflect the reality of that election)

▶ We assume that the initial distribution of votes (i.e.,
probability of winning) was π = (0.49, 0.45, 0.06) for Gore,
Bush and Nader respectively

▶ Further, we assume the following transition probability
matrix
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A probabilistic graph presentation of the Markov chain
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▶ If we represent the transition probability a square matrix P
such that Pij = pij , we can obtain the distribution of states
in step n, π(n), as follows

π(n) = π(n−1)P = . . . = π(0)Pn

▶ For the above example, we have

π(0) = (0.4900, 0.4500, 0.0600)

π(10) = (0.4656, 0.4655, 0.0689)

π(100) = (0.4545, 0.4697, 0.0758)

π(200) = (0.4545, 0.4697, 0.0758)
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▶ As we can see last, after several iterations, the above
Markov chain converges to a distribution,
(0.4545, 0.4697, 0.0758)

▶ In this example, the chain would have reached this
distribution regardless of what initial distribution π(0) we
chose. Therefore, π = (0.4545, 0.4697, 0.0758) is the
stationary distribution for the above Markov chain

▶ Stationary distribution. A distribution of Markov chain
states is called to be stationary if it remains the same in
the next time step, i.e.,

π = πP
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▶ How can we find out whether such distribution exists?

▶ Even if such distribution exists, is it unique or not?

▶ Also, how do we know whether the chain would converge to
this distribution?

▶ To find out the answer, we briefly discuss some properties
of Markov chains
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▶ Irreducible: A Markov chain is irreducible if the chain can
move from any state to another state.

▶ Examples
▶ The simple random walk is irreducible
▶ The following chain, however, is reducible since Nader does

not communicate with the other two states (Gore and Bush)
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▶ Period: the period of a state i is the greatest common
divisor of the times at which it is possible to move from i
to i.

▶ For example, all the states in the following Markov chain
have period 3. 0 1 0

0 0 1
1 0 0


▶ Aperiodic: a Markov chain is said to be aperiodic if the

period of each state is 1, otherwise the chain is periodic.
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▶ Recurrent states: a state i is called recurrent if with
probability 1, the chain would ever return to state i given
that it started in state i.

▶ Positive recurrent: a recurrent state j is called positive
recurrent if the expected amount of time to return to state
j given that the chain started in state j is finite

▶ For a positive recurrent Markov chain, the stationary
distribution exists and is unique
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▶ Reversibility: a Markov chain is said to be reversible
with respect to a probability distribution π if πipij = πjpji

▶ In fact, if a Markov chain is reversible with respect to π,
then π is also a stationary distribution∑

i

πipij =
∑
i

πjpji

= πj
∑
i

pji

= πj

since
∑

i pji = 1 for all transition probability matrices

▶ This is also known as detailed balance condition.
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▶ We can define a Markov chain on a general state space X
with initial distribution π(0) and transition probabilities
p(x,A) defined as the probability of jumping to the subset
A from point x ∈ X

▶ Similarly, with Markov property, we have the joint
probability

p(X0 ∈ A0, . . . , Xn ∈ An) =

∫
A0

π(0)(dx0) . . .

∫
An

p(xn−1, dxn)

▶ Example. Consider a Markov chain with the real line as its
state space. The initial distribution is N (0, 1), and the
transition probability is p(x, ·) = N (x, 1). This is just a
Brownian motion (observed at discrete time)
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▶ Unlike the discrete space, we now need to talk about the
property of Markov chains with a continuous non-zero
measure ϕ, on X , and use sets A instead of points

▶ A chain is ϕ-irreducible if for all A ⊆ X with ϕ(A) > 0 and
for all x ∈ X , there exists a positive integer n such that

pn(x,A) = p(Xn ∈ A|X0 = x) > 0

▶ Similarly, we need to modify our definition of period
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▶ A distribution π is a stationary distribution if

π(A) =

∫
X
π(dx)p(x,A), ∀A ⊆ X

▶ As for the discrete case, a continuous space Markov chain
is reversible with respect to π if

π(dx)p(x, dy) = π(dy)p(y, dx)

▶ Similarly, if the chain is reversible with respect to π, then π
is a stationary distribution

▶ Example. Consider a Markov chain on the real line with
initial distribution N (1, 1) and transition probability
p(x, ·) = N (x2 ,

3
4). It is easy to show that the chain

converges to N (0, 1) (Exercise)
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▶ Ergodic: a Markov chain is ergodic if it is both irreducible
and aperiodic, with stationary distribution π

▶ Ergodic Theorem. For an ergodic Markov chain on the
state space X having stationary distribution π, we have: (i)
for all measurable A ⊆ X and π-a.e. x ∈ X ,

lim
t→∞

pt(x,A) = π(A)

(ii) ∀f with Eπ|f(x)| < ∞,

lim
T→∞

1

T

T∑
t=1

f(Xt) =

∫
X

f(x)π(x)dx, a.s.

In particular, π is the unique stationary probability density
function for the chain
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