Bayesian Theory and Computation

Lecture 3: Monte Carlo Methods

Cheng Zhang

School of Mathematical Sciences, Peking University

Feb 26, 2024

Background

- ▶ We saw previously that in certain situations, the posterior distribution has a closed form (e.g., when the prior is conjugate), and the integrals are tractable.
- ► For many other problems, however, finding the posterior distribution and obtaining the expectation are far from trivial.
- Remember that even for the case of simple normal distribution with two parameters, the posterior didn't have a closed form unless we were willing to use noninformative priors or tie the variance of the mean to the variance of the data.
- ▶ In the following few lectures, we focus on problems where the posterior distribution is not analytically tractable.
- For this, we need to learn about Monte Carlo methods and Markov chain stochastic processes.

Monte Carlo Method

- Suppose we are interested in estimating $I(h) = \int_a^b h(x) dx$
- ▶ If we can draw iid samples, $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ uniformly from (a, b), we can approximate the integral as

$$\hat{I}_n = (b-a)\frac{1}{n}\sum_{i=1}^n h(x^{(i)})$$

▶ Note that we can think about the integral as

$$(b-a)\int_{a}^{b}h(x)\cdot\frac{1}{b-a}dx$$

where $\frac{1}{b-a}$ is the density of Uniform(a, b)

- ⑧ 北京大学 PEKING UNIVERSITY

Monte Carlo Method

- ► In general, we are interested in integrals of the form $\int_{\mathcal{X}} h(x) f(x) dx$, where f(x) is a probability density function
- ► Analogous to the above argument, we can approximate this integral (or expectation) by drawing iid samples x⁽¹⁾, x⁽²⁾,..., x⁽ⁿ⁾ from the density f(x) and then

$$\hat{I} = \frac{1}{n} \sum_{i=1}^{n} h(x^{(i)})$$

▶ Based on the law of large numbers, we know that

$$\lim_{n \to \infty} \hat{I}_n \xrightarrow{p} I$$

▶ And based on the central limit theorem

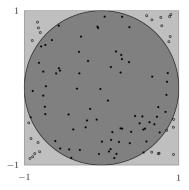
$$\sqrt{n}(\hat{I}_n - I) \to \mathcal{N}(0, \sigma^2), \quad \sigma^2 = \mathbb{V}\mathrm{ar}(h(X))$$

Example: estimating π

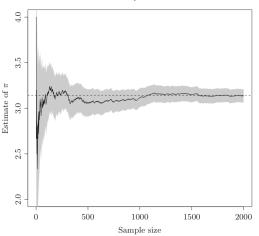
• Let $h(x) = \mathbf{1}_{B(0,1)}(x)$, then $\pi = 4 \int_{[-1,1]^2} h(x) \cdot \frac{1}{4} dx$

▶ Monte Carlo estimate of π

$$\hat{I}_n = \frac{4}{n} \sum_{i=1}^n \mathbf{1}_{B(0,1)}(x^{(i)})$$
$$x^{(i)} \sim \text{Uniform}([-1,1]^2)$$



Example: estimating π



Monte Carlo estimate of π (with 90% confidence interval)

Monte Carlo vs Quadrature

• Convergence rate for Monte Carlo: $\mathcal{O}(n^{-1/2})$

$$p\left(|\hat{I}_n - I| \le \frac{\sigma}{\sqrt{n\delta}}\right) \ge 1 - \delta, \quad \forall \delta$$

often slower than quadrature methods ($\mathcal{O}(n^{-2})$ or better)

- ► However, the convergence rate of Monte Carlo does not depend on dimensionality
- On the other hand, quadrature methods are difficult to extend to multidimensional problems, because of the curse of dimensionality. The actual convergence rate becomes $\mathcal{O}(n^{-k/d})$, for any order k method in dimension d
- ▶ This makes Monte Carlo strategy very attractive for high dimensional problems

Exact Simulation

- Monte Carlo methods require sampling a set of points chosen randomly from a probability distribution
- For simple distribution f(x) whose inverse cumulative distribution functions (CDF) exists, we can sampling x from f as follows

$$x = F^{-1}(u), \quad u \sim \text{Uniform}(0, 1)$$

where F^{-1} is the inverse CDF of f

► Proof.

$$p(a \le x \le b) = p(F(a) \le u \le F(b)) = F(b) - F(a)$$

Examples

► Exponential distribution: $f(x) = \theta \exp(-\theta x)$. The CDF is

$$F(a) = \int_0^a \theta \exp(-\theta x) = 1 - \exp(-\theta a)$$

therefore, $x = F^{-1}(u) = -\frac{1}{\theta} \log(1-u) \sim f(x)$. Since 1-u also follows the uniform distribution, we often use $x = -\frac{1}{\theta} \log(u)$ instead

► Normal distribution: $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$. Box-Muller Transform

$$X = \sqrt{-2\log U_1}\cos 2\pi U_2$$
$$Y = \sqrt{-2\log U_1}\sin 2\pi U_2$$

where $U_1 \sim \text{Uniform}(0,1), \quad U_2 \sim \text{Uniform}(0,1)$

Intuition for Box-Muller Transform

• Assume Z = (X, Y) follows the standard bivariate normal distribution. Consider the following transform

$$X = R\cos\Theta, \quad Y = R\sin\Theta$$

- From symmetry, clearly Θ follows the uniform distribution on the interval $(0, 2\pi)$ and is independent of R
- \blacktriangleright What distribution does R follow? Let's take a look at its CDF

$$p(R \le r) = p(X^2 + Y^2 \le r^2)$$

= $\frac{1}{2\pi} \int_0^r t \exp(-\frac{t^2}{2}) dt \int_0^{2\pi} d\theta = 1 - \exp(-\frac{r^2}{2})$

Therefore, using the inverse CDF rule, $R = \sqrt{-2 \log U_1}$

Rejection Sampling

- If it is difficult or computationally intensive to sample directly from f(x) (as described above), we need to use other strategies
- Although it is difficult to sample from f(x), suppose that we can evaluate the density at any given point up to a constant f(x) = f*(x)/Z, where Z could be unknown (remember that this make Bayesian inference convenient since we usually know the posterior distribution only up to a constant)
- Furthermore, assume that we can easily sample from another distribution with the density $g(x) = g^*(x)/Q$, where Q is also a constant

Rejection Sampling

▶ Now we choose the constants c such that $cg^*(x)$ becomes the envelope (blanket) function for $f^*(x)$:

$$cg^*(x) \ge f^*(x), \quad \forall x$$

- Then, we can use a strategy known as *rejection sampling* in order to sample from f(x) indirectly
- ▶ The rejection sampling method works as follows
 - 1. draw a sample x from g(x)
 - 2. generate $u \sim \text{Uniform}(0, 1)$
 - 3. if $u \leq \frac{f^*(x)}{cg^*(x)}$ we accept x as the new sample, otherwise, reject x (discard it)
 - 4. return to step 1

Rejection Sampling

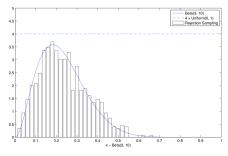
Rejection sampling generates samples from the target density, no approximation involved

$$p(X^{R} \le y) = p(X^{g} \le y | U \le \frac{f^{*}(X^{g})}{cg^{*}(X^{g})})$$

= $p(X^{g} \le y, U \le \frac{f^{*}(X^{g})}{cg^{*}(X^{g})})/p(U \le \frac{f^{*}(X^{g})}{cg^{*}(X^{g})})$
= $\frac{\int_{-\infty}^{y} \int_{0}^{\frac{f^{*}(z)}{cg^{*}(z)}} dug(z)dz}{\int_{-\infty}^{\infty} \int_{0}^{\frac{f^{*}(z)}{cg^{*}(z)}} dug(z)dz}$
= $\int_{-\infty}^{y} f(z)dz$

Example

- ► Assume that it is difficult to sample from the Beta(3, 10) distribution (this is not the case of course)
- We use the Uniform(0, 1) distribution with g(x) = 1, ∀x ∈ [0, 1], which has the envelop property: 4g(x) > f(x), ∀x ∈ [0, 1]. The following graph shows the result after 3000 iterations



Rejection sampling becomes challenging as the dimension of x increases. A good rejection sampling algorithm must have three properties

- ► It should be easy to construct envelops that exceed the target everywhere
- ▶ The envelop distributions should be easy to sample
- ▶ It should have a low rejection rate

Squeezed Rejection Sampling

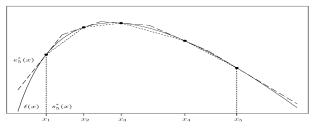
- ▶ When evaluating *f*^{*} is computationally expensive, we can improve the simulation speed of rejection sampling via squeezed rejection sampling
- ▶ Squeezed rejection sampling reduces the evaluation of f via a nonnegative squeezing function s that does not exceed f^* anywhere on the support of f: $s(x) \leq f^*(x), \forall x$
- ▶ The algorithm proceeds as follows:
 - 1. draw a sample x from g(x)
 - 2. generate $u \sim \text{Uniform}(0, 1)$
 - 3. if $u \leq \frac{s(x)}{cg^*(x)}$, we accept x as the new sample, return to step 1
 - 4. otherwise, determine whether $u \leq \frac{f^*(x)}{cg^*(x)}$. If this inequality holds, we accept x as the new sample, otherwise, we reject it.
 - 5. return to step 1

Squeezed Rejection Sampling



Remark: The proportion of iterations in which evaluation of f is avoided is $\int s(x)dx / \int e(x)dx$

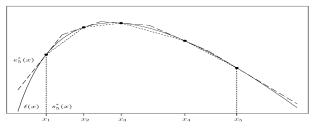
Adaptive Rejection Sampling



▶ For a continuous, differentiable, log-concave density on a connected region of support, we can adapt the envelope construction (Gilks and Wild, 1992)

- Let $T = \{x_1, \ldots, x_k\}$ be the set of k starting points.
- We first sample x^* from the piecewise linear upper envelop e(x), formed by the tangents to the log-likelihood ℓ at each point in T_k .

Adaptive Rejection Sampling



▶ To sample from the upper envelop, we need to transform from log space by exponentiating and using properties of the exponential distribution

- We then either accept or reject x^* as in squeeze rejection sampling, with s(x) being the piecewise linear lower bound formed from the chords between adjacent points in T
- Add x^* to T whenever the squeezing test fails.

- For more complex distributions, we can use a Markov chain process to generate samples (which would not be independent anymore) and approximate the target distribution.
- This method is known as Markov chain Monte Carlo (MCMC) technique.
- ▶ However, we first need to discuss Markov chains and stochastic processes in general.

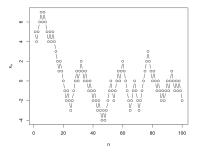
Stochastic Processes & Random Walks

- Stochastic processes is a family of random variables, usually indexed by a set of numbers (time). A discrete time stochastic process is simply a sequence of random variables, X₀, X₁,..., X_n defined on the same probability space
- One of the simplest stochastic processes (and one of the most useful) is the simple random walk
- Consider a simple random walk on a graph $G = (\Omega, E)$. The stochastic process starts from an initial position $X_0 = x_0 \in \Omega$, and proceeds following a simple rule:

$$p(X_{n+1}|X_n = x_n) \sim \text{Discrete}(\mathcal{N}(x_n)), \ \forall n \ge 0$$

where $\mathcal{N}(x_n)$ denotes the neighborhood of x_n

Random Walk: One Dimension



• Consider a sequence of iid random variables $\{Z_i\}$ such that $p(Z_i = 1) = p$, $p(Z_i = -1) = 1 - p$. A one dimension random work process can be defined as $X_0 = a$, $X_n = a + Z_1 + \dots + Z_n$.

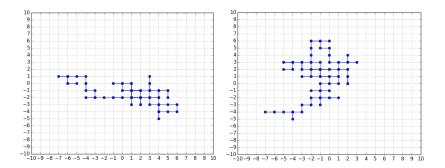
 $X_0 = a, \ X_n = a + Z_1 + \dots + Z_n$

• The distribution of X_n

$$p(X_n = a + k) = \binom{n}{(n+k)/2} p^{(n+k)/2} (1-p)^{(n-k)/2}$$

Random Walk: Two Dimension

Two random walks on a 20×20 grid graph



Discrete Time, Discrete Space Markov Chains 23/38

- ► The above simple random walk is a special case of another well-known stochastic process called *Markov chains*
- A Markov chain represents the stochastic movement of some particle in the state space over time. The particle initially starts from state i with probability $\pi_i^{(0)}$, and after that moves from the current state i at time t to the next state j with probability $p_{ij}(t)$
- ► A Markov chain has three main elements:
 - 1. A state space ${\mathcal S}$
 - 2. An initial distribution $\pi^{(0)}$ over S
 - 3. Transition probabilities $p_{ij}(t)$ which are non-negative numbers representing the probability of going from state ito j, and $\sum_{j} p_{ij}(t) = 1$.
- When $p_{ij}(t)$ does not depend on time t, we say the Markov chain is time-homegenous

Markov Property

► Chain rule (in probability)

$$p(X_n = x_n, \dots, X_0 = x_0) = \prod_{i=1}^n p(X_i = x_i | X_{$$

Markov property

$$p(X_{i+1} = x_{i+1} | X_i = x_i, \dots, X_0 = x_0) = p(X_{i+1} = x_{i+1} | X_i = x_i)$$

▶ Joint probability with Markov property

$$p(X_n = x_n, \dots, X_0 = x_0) = \prod_{i=1}^n p(X_i = x_i | X_{i-1} = x_{i-1})$$

fully determined by the transition probabilities

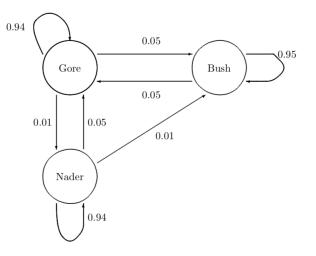
Example

- ► Consider the 2000 US presidential election with three candidates: Gore, Bush and Nader (just an illustrative example and does not reflect the reality of that election)
- We assume that the initial distribution of votes (i.e., probability of winning) was $\pi = (0.49, 0.45, 0.06)$ for Gore, Bush and Nader respectively
- ► Further, we assume the following transition probability matrix

	Gore	Bush	Nader
Gore	0.94	0.05	0.01
Bush	0.05	0.95	0
Nader	0.05	0.01	0.94

Example

A probabilistic graph presentation of the Markov chain



Stationary Distribution

• If we represent the transition probability a square matrix P such that $P_{ij} = p_{ij}$, we can obtain the distribution of states in step n, $\pi^{(n)}$, as follows

$$\pi^{(n)} = \pi^{(n-1)}P = \ldots = \pi^{(0)}P^n$$

▶ For the above example, we have

$$\pi^{(0)} = (0.4900, 0.4500, 0.0600)$$
$$\pi^{(10)} = (0.4656, 0.4655, 0.0689)$$
$$\pi^{(100)} = (0.4545, 0.4697, 0.0758)$$
$$\pi^{(200)} = (0.4545, 0.4697, 0.0758)$$

Stationary Distribution

- As we can see last, after several iterations, the above Markov chain converges to a distribution, (0.4545, 0.4697, 0.0758)
- ▶ In this example, the chain would have reached this distribution regardless of what initial distribution $\pi^{(0)}$ we chose. Therefore, $\pi = (0.4545, 0.4697, 0.0758)$ is the stationary distribution for the above Markov chain
- ▶ Stationary distribution. A distribution of Markov chain states is called to be stationary if it remains the same in the next time step, i.e.,

$$\pi=\pi P$$

- ▶ How can we find out whether such distribution exists?
- Even if such distribution exists, is it unique or not?
- ▶ Also, how do we know whether the chain would converge to this distribution?
- ▶ To find out the answer, we briefly discuss some properties of Markov chains

Irreducibility

- ▶ Irreducible: A Markov chain is irreducible if the chain can move from any state to another state.
- ► Examples
 - ▶ The simple random walk is irreducible
 - ▶ The following chain, however, is reducible since Nader does not communicate with the other two states (Gore and Bush)

	Gore	Bush	Nader
Gore	0.95	0.05	0
Bush	0.05	0.95	0
Nader	0	0	1

Aperiodicity

- Period: the period of a state i is the greatest common divisor of the times at which it is possible to move from i to i.
- ► For example, all the states in the following Markov chain have period 3.

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

► Aperiodic: a Markov chain is said to be aperiodic if the period of each state is 1, otherwise the chain is periodic.

Recurrent vs. Transient

• **Recurrent** states: a state *i* is called recurrent if with probability 1, the chain would ever return to state *i* given that it started in state *i*.

	Gore	Bush	Nader
Gore	0.94	0.05	0.01
Bush	0.05	0.95	0
Nader	0.05	0.01	0.94

- ▶ Positive recurrent: a recurrent state *j* is called positive recurrent if the expected amount of time to return to state *j* given that the chain started in state *j* is finite
- ▶ For a positive recurrent Markov chain, the stationary distribution exists and is unique

Reversibility

- **Reversibility**: a Markov chain is said to be reversible with respect to a probability distribution π if $\pi_i p_{ij} = \pi_j p_{ji}$
- In fact, if a Markov chain is reversible with respect to π , then π is also a stationary distribution

$$\sum_{i} \pi_{i} p_{ij} = \sum_{i} \pi_{j} p_{ji}$$
$$= \pi_{j} \sum_{i} p_{ji}$$
$$= \pi_{j}$$

since $\sum_i p_{ji} = 1$ for all transition probability matrices \blacktriangleright This is also known as *detailed balance condition*.

Discrete Time, General Space Markov Chains 34/38

- We can define a Markov chain on a general state space \mathcal{X} with initial distribution $\pi^{(0)}$ and transition probabilities p(x, A) defined as the probability of jumping to the subset A from point $x \in \mathcal{X}$
- Similarly, with Markov property, we have the joint probability

$$p(X_0 \in A_0, \dots, X_n \in A_n) = \int_{A_0} \pi^{(0)}(dx_0) \dots \int_{A_n} p(x_{n-1}, dx_n)$$

• Example. Consider a Markov chain with the real line as its state space. The initial distribution is $\mathcal{N}(0, 1)$, and the transition probability is $p(x, \cdot) = \mathcal{N}(x, 1)$. This is just a Brownian motion (observed at discrete time)

$\phi\text{-}\mathrm{irreducibility}$ and $\phi\text{-}\mathrm{aperiodicity}$

- Unlike the discrete space, we now need to talk about the property of Markov chains with a continuous non-zero measure ϕ , on \mathcal{X} , and use sets A instead of points
- A chain is ϕ -irreducible if for all $A \subseteq \mathcal{X}$ with $\phi(A) > 0$ and for all $x \in \mathcal{X}$, there exists a positive integer n such that

$$p^{n}(x,A) = p(X_{n} \in A | X_{0} = x) > 0$$

▶ Similarly, we need to modify our definition of period

Stationary Distribution

• A distribution π is a stationary distribution if

$$\pi(A) = \int_{\mathcal{X}} \pi(dx) p(x, A), \quad \forall A \subseteq \mathcal{X}$$

► As for the discrete case, a continuous space Markov chain is reversible with respect to π if

$$\pi(dx)p(x,dy) = \pi(dy)p(y,dx)$$

- Similarly, if the chain is reversible with respect to π , then π is a stationary distribution
- Example. Consider a Markov chain on the real line with initial distribution $\mathcal{N}(1, 1)$ and transition probability $p(x, \cdot) = \mathcal{N}(\frac{x}{2}, \frac{3}{4})$. It is easy to show that the chain converges to $\mathcal{N}(0, 1)$ (Exercise)

Ergodicity

- Ergodic: a Markov chain is ergodic if it is both irreducible and aperiodic, with stationary distribution π
- ► Ergodic Theorem. For an ergodic Markov chain on the state space \mathcal{X} having stationary distribution π , we have: (i) for all measurable $A \subseteq \mathcal{X}$ and π -a.e. $x \in \mathcal{X}$,

$$\lim_{t \to \infty} p^t(x, A) = \pi(A)$$

(ii) $\forall f \text{ with } \mathbb{E}_{\pi}|f(x)| < \infty$,

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} f(X_t) = \int_{\mathcal{X}} f(x) \pi(x) dx, \quad \text{a.s.}$$

In particular, π is the unique stationary probability density function for the chain

References

- P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic, New York, 1984.
- W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41:337–348, 1992.

