
Bayesian Theory and Computation, Problem Set 4

May 14, 2024 Due 05/29/2024

Problem 1.
In this problem, we will apply LDA to human ancestry discovery. In applications of
population genetics, it is often useful to classify individuals in a sample into populations.
An underlying assumption is that there are K ancestor populations, and each individual
is an admixture of the ancestor populations. For each individual, we measure some
genetic data about them, called genotype data. Each genotype is a locus that can take
a discrete count value, individuals with similar genotypes are expected to belong to the
same ancestor populations. We can derive the admixture coefficients θ for each individual
by running an LDA model, where the documents are individuals, and the words are the
genotype.

Now let us assume the β matrix is known, and focus on variational inference of the
population mixture θ and the genotype ancestry (topic) assignments z for any individual.
The variational distribution used to approximate the posterior (for each individual) is

qi(θ, z|γ, φ) = q(θi|γi)
Ni∏
n=1

q(zin|φin), i = 1, . . . ,M

The data matrix provides data about M = 100 individuals, each represented by a vo-
cabulary of N = 200 genotype loci. This data has been preprocessed into a count matrix
D of size M × N . Dij is the number of occurrences of genotype j in individual i, and∑

j Dij is the number of genotype loci in an individual. We learnt the LDA topic model
over K = 4 ancestor populations, and the data matrix and the known β matrix can be
downloaded from the course website. The value of α is 0.1. You may use the following
code to load the data in python.

1 import pickle

2

3 with open("lda_data.p", "rb") as handle:

4 data_loaded = pickle.load(handle)

(1) Derive the variational inference update equations for estimating γ and φ. [5pts]

(2) For individual one, run LDA inference to find φ for each genotype locus, store it as
a matrix of size n1 ×K (where n1 :

∑
1j I(D1j 6= 0), I(·) being the indicator function,

is the number of non-zero genotypes present in individual 1), and plot it as an image in
your write up. Don’t forget to show the colormap using the colorbar function to allow
the colors in the image to be mapped to numbers! [10pts]

(3) We will construct a matrix Θ of size M ×K to represent the ancestor assignments
for all individuals in the population. For each individual i, run LDA inference to find γ,
and store it as row of Θ, i.e. Θi = γ. Visualize Θ as an image. [5pts]

1



(4) Report the number of iterations needed to get to convergence for running inference
on all M individuals (you may use absolute change less than 1e-3 as the convergence
criteria). [5pts]

(5) Repeat the experiment for α = 0.01, α = 1, α = 10, and for each of α, visualize the
Θ matrix summarizing the ancestor population assignments for all individuals. Discuss
the changes in the ancestor population assignments to the individuals as α changes.
Does the mean number of iterations required for convergence for inference change as α
changes? [10pts]

Problem 2.
A simple first-order autoregressive process, AR(1), is defined as follows:

yt = a+ byt−1 + εt, t ≥ 1, y0 = a,

where a and b are some constants and εt ∼ N (0, 1) is a Gaussian noise. AR(1) de-
fines a distribution over sequence of discrete values, {y0, y1, . . .} (to sample from this
distribution, you can simply run the forward autoregressive recursion).

Derive a mean, µ(t), and a kernel, k(t, t′), functions for a Gaussian process that defines
a distribution over functions, y(t), that coincides with AR(1) for all t ≥ 1. [15pts]

Problem 3.
Let G0 be a distribution over Θ and let α be a positive scalar. For any finite, measurable
partition A1, . . . , Ar of Θ, G is defined to be a Dirichlet process with base distribution
G0 and concentration parameter α0, denoted by G ∼ DP(α0G0), if

(G(A1), . . . , G(Ar)) ∼ Dir(α0G0(A1), . . . , α0G0(Ar)).

Suppose we have observation X1, . . . , Xn, which we assume are drawn from G. Assuming
we have the prior G ∼ DP(α0G0), derive the posterior distribution for G|X1, . . . , Xn.

[15pts]

Problem 4.
Consider the following DP mixture of Gaussian model in R2

yi|θi ∼ N (θi, σ
2
yI2)

θi|G ∼ G, i = 1, . . . , n

G ∼ DP(α0G0)

G0 = N (0, σ20I2)

Let σ0 = 5, σy = 1. The data on the course website were generated by sampling from
this model for a particular choice of α0.
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(1) Generate 1000 samples from the model with α0 = 0.1, 1, 5, 10 respectively, and show
the scatter plots of your samples. [5pts]

(2) Download the data from the course website. Implement a collapsed Gibbs sampler
for this model in which the θ parameter have been integrated out. Fix α0 = 1. Run the
sampler, show the scatter plots of the data and the samples of the unique φi’s at the first
few iterations (e.g., 1, 5, 10, 20, 50). When the sampler appears to have converged, use
the subsequent samples to plot a histogram of the posterior distribution of the number
of occupied tables. [15pts]

(3) Now place a vague gamma prior on α0. Again plot a histogram of the posterior
distribution of the number of occupied tables. Also plot a histogram of the posterior
distribution of α0. Explore the sensitivity of your results to the choice of parameters for
the gamma distribution. [10pts]

(4) Interpret your results. [5pts]
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