
Bayesian Theory and Computation, Problem Set 2

March 25, 2024 Due 04/08/2024

Problem 1.
In a linear regression model the n-vector of responses y has distribution y|β ∼ N (Xβ, σ2In),
where X is the n× p design matrix of rank p and β is the p-vector of regression coeffi-
cients. Suppose that the prior is p(β, σ2) ∝ σ−2.

(1) What is the posterior distribution of β|y, σ2? [5pts]

(2) Show that the posterior distribution of σ2 has a close form

σ2|y ∼ Inv-χ2(n− p, s2),

where s2 can be expressed as a function of β̂, the usual MLE of β. [10pts]

Problem 2.
The following table gives the worldwide number of fatal accidents and deaths on sched-
uled airline flights per year over a ten year period (from Table 2.2 in Gelman, et al.).
Death rate is passenger deaths per 100 million passengers miles.

Assume that the number of fatal accidents in each year, Yi, follow independent Poisson
distribution with intensity linear in the number of passenger miles flown, Xi. In other
words, Yi ∼ Poisson(λi) with λi = α + βXi. (You can approximate the number of
passenger miles flown by dividing the appropriate columns of the table and by ignoring
round-off errors.) Consider a Bayesian solution to this Poisson regression problem, using
constant priors on α, β subject to the natural constraint that α+ βXi ≥ 0 for all i.
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(1) Choose a suitable fine grid, and evaluate the posterior means of α and β by writing
these as suitable integrals and then approximating such integrals with finite sums. Note
that the joint posterior is not normalized. [5pts]

(2) Compute the MLE and observed Fisher information matrix. Based on your com-
putation, construct a normal approximation to the posterior distribution. Report the
posterior means and 95% credible intervals for α and β based on this normal approxi-
mation. Compare the posterior mean estimates with those in (1). [10pts]

(3) The normal has thin tails. Consider a bivariate t distribution with four degrees of
freedom to approximate the posterior. Generate 10000 draws from this bivariate t dis-
tribution and report posterior means and 95% credible intervals based on these draws.
Compare with (2). [10pts]

(4) We can refine the approximation in (3) by using importance sampling. Describe
how importance sampling works (using the bivariate t as the proposal density) in this
context. Compare the estimated posterior means and 95% intervals with those in (2)
and (3). [10pts]

Problem 3.
Consider the following model

zi|µi ∼ N (µi, 1), µi ∼ N (0, A), i = 1, . . . , N

The James-Stein estimator is defined to be

µ̂JS =

(
1− N − 2

S

)
z, S = ‖z‖2 =

N∑
i=1

z2i

(1) What is the Bayes estimator µ̂Bayes for µ = (µ1, . . . , µN ) when the square error lost
is used? And what is the MLE µ̂MLE? [5pts]

(2) Compute the integrated risk for µ̂JS, µ̂Bayes and µ̂MLE. [10pts]

(3) Simulate data sets with different µ and N . Estimate the frequentist risk of µ̂JS

Eµ‖µ̂JS − µ‖2

How does it compare with Eµ‖µ̂MLE − µ‖2? Report your findings. [10pts]

Problem 4.
Consider the following linear Gaussian state space model

Xt = ρXt−1 + σxξt

Yt = Xt + σyηt
(1)

where X0 ∼ N (0, σ2
x

1−ρ2 ), ξt and ηt are mutually independent standard Gaussian noises,
ρ = 0.9, σx = 1 and σy = 0.2.
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(1) Derive the locally optimal importance distribution p(Xt|Xt−1, Yt). [5pts]

(2) Simulate a data set from the model (1) with t = 0, . . . , 100. Implement sequential
monte carlo with N = 1000 particles and resample when ESS is less than 500, using the
importance distribution derived in (1) and the naive importance distribution p(Xt|Xt−1).
Report your estimate of the marginal posterior p(x100|y≤100) as a histogram. Plot the
ESS of the importance weights as a function of time t. [15pts]

(3) Repeat your experiments for 1000 independent runs and report the mean square
error of the estimate of E(Xt|Y≤t) as a function of time t. [5pts]

(4) Repeat your experiments in (2) and (3) when σy = 0.8. Report your findings.[10pts]
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