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Motivation via Clustering 2/45

How to choose the number of clusters?
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Finite Mixture Models 5/45

> A generative approach to clustering

» pick one of K clusters from a distribution 7 = (71,...,7x)
» generate a data point from a cluster-specific probability
distribution

» This yields a finite mixture model:

p(z|o, ) Z?Tkp | Pr)

where 7 and ¢ = (¢1,...,¢x) are the parameters, and here
we assume the sae parameterized family for each cluster for
simplicity.

» Data {x;}}¥, are assumed to be generated conditionally iid
from this mixture model.

=~/ PEKING UNIVF RSITY




Example: Gaussian Mixtures 6/45

» For Gaussian mixtures, ¢ = (g, ) and p(z|dy) is a
Gaussian density with mean pj and covariance matrix >,

ez x Y

@

PEKING UNIVERSITY



Finite Mixture Models 7/45

» Mixture models make the assumption that each data point
arises from a single mixture component, i.e., the kth cluster
is by definition the set of data points arising from the kth
mixture component.

» Can capture this explicitly via a latent multinomial
variable Z:

K
plalg,m) =Y p(Z = klm)p(z|Z = k, )

k=1

K
= mep(z|or)
k=1
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Finite Mixture Models 8/45

» Another way to express this: define an underlying measure

K
G = Z TR0g,
k=1

where 04, is an atom (Dirac delta function) at ¢y.

» Now we can redefine the process of obtaining a sampling
from a finite mixture model as follows. For ¢ =1,...,n:

0;, ~G
x; ~ p(-|0;)

> Note that each 6; is equal to one of the underlying ¢y.
Indeed, the subset of {6;} that maps to ¢ is exactly the
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Finite Mixture Models 9/45
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Bayesian Finite Mixture Models 10/45

» Bayesian approaches allow us to integrate out model
parameters

> Need to place priors on the parameters ¢ and

» The choice of prior for ¢ is model-specific; e.g., we may use
conjugate normal/inverse-gamma priors for a Gaussian
mixture model. Let us denote this prior as Gy.

» What to choose for the mixture weights 77 A common
choice is a symmetric Dirichlet prior, Dir(ag/K, ..., a0/ K)

» the symmetry accords with the common assumption of the
order-free of the labels of the mixture components

» the concentration parameter aq controls concentration level
of the labels
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Bayesian Finite Mixture Models 11/45

o~ Go

Tk ~ Dir(ao/K,---,O‘O/K) Qg G ‘ ‘ ‘
K
k=1 8

|

zi ~ p(-]6:) AN

» Note that G is now a random measure
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Inference Methods 12/45

» Posterior distributions can’t be found analytically; nor can
predictive distributions (for future observations)

» However, a variety of MCMC sampling algorithms are
available

» Use the indicators Z within a Gibbs sampler. Give Z, we
know which data points belong to which cluster, so:
» p(n|Z,¢): standard multinomial-Dirichlet conjugacy
> p(¢p|Z,): separate updates for each cluster; i.e., for each ¢
(and conjugacy of Gy and p(:|¢) can make this easy)
» p(Z|m, ¢): multinomial classification

» We can also use variational inference.
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Model Choice for Finite Mixture Models 13/45

» How to choose K, the number of mixture components?

» Various generic model selection methods can be considered:
e.g., cross-validation, bootstrap, AIC, BIC, DIC, Laplace,
bridge sampling, etc

» Or we can place a parametric prior on K (e.g., Poisson)
and use Bayesian methods

» The Dirichlet process provides a nonparametric Bayesian
alternative.
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Bayesian Nonparametric Mixture Models 14/45

» Make sure we always have more clusters than we need.

» How about infinite clusters a priori?
p(z[¢, m) Z Tp ([P

» A finite data set will always use a finite, but random,
number of clusters.

» How to choose the prior?

» We need something like a Dirichlet prior, but with an
infinte number of components.

=~/ PEKING UNIVF RSITY




Properties of The Dirichlet Distribution 15/45

» Relation to gamma distribution: If n, ~ Gamma(ayg, 5)
independently, then

S = an ~ Gamma, (Z ak,5>
k k

and
V=(v1,...,0) = (m/S,...,n/S) ~ Dir(aq,...,ak)
» Therefore, if (m1,...,7x) ~ Dir(aq,...,ax) then
(m1 + w2, w3, ..., TK) ~ Dir(ag + oo, as, ..., ax)

This is known as the collapsing property.
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Properties of The Dirichlet Distribution 16/45

» The beta distribution is a Dirichlet distribution on the

1-simplex
» Let (m1,...,mx) ~ Dir(ay,...,ax) and
0 ~ Beta(apb,a1(1 —0)), 0 <b < 1.
» Then
(m10,71(1=0), w9, ..., 7K) ~ Dir(a1by, a1 (1-b1), g, . .., k)

» More generally, if § ~ Dir(a1by, a1be, ..., a1bn), >, b =1,
then

(m61,...,mON, T2, ..., ) ~ Dir(aiby,...,a1by, o, ..., ak)
This is known as the splitting property.
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Properties of The Dirichlet Distribution 17/45

» Renormalization. If (my,...,7x) ~ Dir(aq,...,ak), and

Tk

V:(V27V37~-7VK)7 Vk:ﬂ
k>2

» What is the distribution of V?
V ~ Dir(ag,...,ax)

» All these properties can be easily verified using the
aforementioned gamma distribution representation.
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The Dirichlet Process 18/45

» Let GGy be a distribution on some space €2, e.g. a Gaussian
distribution on the real line.

» Assume that 7, ¢ have the following distributions

or ~ Go
(%)

» Then G := )~ m;04, defines an infinite distribution over
Go.

» We say (informally) that G follows a Dirichlet Process

G ~ DP(apGh)
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Samples From The Dirichlet Process 19/45

» Samples from the Dirichlet process are discrete.

> We call the point masses in the resulting distribution,
atoms.

» The base measure Gy determines the locations of the atoms.
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Samples From The Dirichlet Process 20/45

» The concentration parameter ag determines the
distribution over atom sizes.

» Small values of o gives sparse distributions.

a=0.1 a=1 a=10

0 0 H ol l“nh

ez X P

@

PEKING UNIVERSITY




Dirichlet Process: A Formal Definition 21/45

» Let (2, B) be a measurable space, with G a probability
measure on the space, and let ag be a positive real number.

» A Dirichlet process is the distribution of a random
probability measure G over (€2, B) such that, for any finite
partition (A1, ..., A,) of Q, the random vector
(G(A1),...,G(A,)) follows a finite-dimensional Dirichlet
distribution:

(G(Al), e ,G(Ar)) ~ DiI‘(Oé()Go(Al), ceey aoG(Ar))

» We write G ~ DP(apGp), and call Gy the base measure, ag
the concentration parameter.

ez x Y

@

PEKING UNIVERSITY




Conjugacy of The Dirichlet Process 22/45

» Let Aj,..., A be a partition of Q. Let G(Ag) be the mass
assigned by G ~ DP(apGy) to partition Ay. Then
(G(A1), ..., G(Ak)) ~ Dir(aoGo(Ar), - - ., 20Go(Ak))
» If we see an observation in the j-th segment, then

(G(Al), .. 7G(AK)’91 S A])
~ Dir(aoGo(Al), e ,OéoG(Aj) +1,... ,OzoG()(AK)).

» This is true for all possible partitions of €).

» Therefore, the posterior distribution of G, given an
observation ¢, is given by

G‘Hl = qb ~ DP(OéoG(] + 5¢)

ez x Y

PEKING UNIVERSITY

@




Predictive Distribution 23/45

» The Dirichlet process clusters observations.

» A new data point can either join an existing cluster, or
start a new cluster.

> Question: What is the predictive distribution for a new
data point?

» Assume (g is a continuous distribution on ). This means
for every point ¢ in 2, Go(¢) = 0.

» First data point:

» Start a new cluster
» Sample a parameter ¢; ~ Gq for that cluster.
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Predictive Distribution 24/45

v

We have now split our parameter space in two: the
singleton ¢1, and everything else.

Let w1 be the size of atom at ¢1.
The combined mass of all the other atoms is m, = 1 — 7.
According to the DP,

(71, m) ~ Dir(0, ap)
Given 01 = ¢1, the posterior is

(7T1,7T*)|¢91 = ¢1 ~ Dir(l, Ozo)
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Predictive Distribution 25/45

» If we integrate out w1, we get

p(O2 = drlh = ¢1) = /p(92 = ¢r|(m1, ™)) (1, 70) |01 = ¢p1)dm

= /ﬂ'kDiI‘((ﬂ'h 1-— Wl)ll,ao)dm

= Epir(1,a0)Tk
1 eeq
_ { Ty k=1

ag
Tran for new k.
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Predictive Distribution 26/45

P> Lets say we choose to start a new cluster, and sample a new
parameter ¢o ~ Gy. Let w9 be the size of the atom at ¢o.

» Similarly, the posterior is
(7717772771-*”91 — ¢17 02 - ¢2 ~ Dlr(la 17 OZO)
» If we integrate out m = (7, ma, T4 ), We get
p(b3 = ¢kl = ¢1,02 = ¢2)

= /p(@g = ¢|m)p(7|01 = ¢1,02 = ¢p2)dm

= EDir(1,1,00) Tk

1 1
2+1a0 %f k=1

= oo ifk=2
Qj_‘gm for new k.
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Predictive Distribution 27/45

» In general, if my is the number of times we have seen
X; =k, and K is the total number of observed values,

p(Bnis = Bil6r, ... 0) = / P(Ouss = Sxlm)p(alos, ., 0n)dr

= EDir(ml,...,mK,ag)Trk

{ Teif k< K

n+ag

a@Q

o for new cluster.

> We tend to see observations that we have seen before, i.e.,
rich-get-richer property

» We can always add new features, a typical nonparametric
behavior.
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Pélya Urn Process

Gy=p(eoe®

28/45

Adapted from Eric Xing

» Joint: G() ~ DP(apGo)

. K
» Marginal: 0,,41|0<pn, a0, Go ~ > 14 n+a0 Gy, + n+a0

Go
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Polya Urn Scheme 29/45

» The resulting distribution over data points can be thought
of using the following urn scheme (Blackwell and
MacQueen, 1973).

» An urn initially contains a black ball of mass «y.

» For n=1,2,..., sample a ball from the urn with
probability proportional to its mass.

» If the ball is black, choose a previously unseen color, record
that color, and return the black ball plus a unit-mass ball
of the new color to the urn.

» If the ball is not black, record it’s color and return it, plus
another unit-mass ball of the same color, to the urn.
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Chinese Restaurant Process 30/45

» The distribution over partitions can also be described in
terms of the following restaurant metaphor:
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» The distribution over partitions can also be described in
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Chinese Restaurant Process 30/45

» The distribution over partitions can also be described in
terms of the following restaurant metaphor:

» The first customer enters a restaurant, and picks a table.

» The n-th customer enters the restaurant. He sits at an
existing table with probability n_"fjao? where my, is the
number of people sat the table k. He starts a new table
with probability —<°

n—1l4ag *
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Chinese Restaurant Process 30/45

» The distribution over partitions can also be described in
terms of the following restaurant metaphor:

» The first customer enters a restaurant, and picks a table.

» The n-th customer enters the restaurant. He sits at an
existing table with probability #j_ao, where my, is the
number of people sat the table k. He starts a new table
with probability —%°

n—l4ag*
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Chinese Restaurant Process 30/45

» The distribution over partitions can also be described in
terms of the following restaurant metaphor:

» The first customer enters a restaurant, and picks a table.

» The n-th customer enters the restaurant. He sits at an
existing table with probability #j_ao, where my, is the
number of people sat the table k. He starts a new table
with probability —<°

n—1+ag
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Exchangeability 31/45

>

An interesting fact: the distribution over the clustering of
the first NV customers does not depend on the order in
which they arrived.

However, the customers are not independent. They tend to
sit at popular tables.

We say that distributions like this are exchangeable.

p(917 .- )QN) :p(ea(l)v' . 'aea(n))

By de Finetti’s theorem, there exists a random
distribution G and a prior P(G) such that

N
P01, 0n) — / [[c@ar)

In our setting, the prior p(G) is just DP(apGp), thus

establishing existence. @ ST
] g T g
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A Second Perspective: Stick Breaking 32/45

» Define an infinite sequence of Beta random variables:
Br ~ Beta(l,ap), k=1,2,...

» Now define an infinite sequence of mixing proportions as:

m =051
k—1

Wk:BkH(]-_/BK)7 k:2737
/=1

» This can be viewed as breaking off portions of a stick:

61 |32 (1_51)
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Stick Breaking Construction 33/45

» We now have an explicit formula for each m:
k—1
T = B szl (1—25)

» We can easily see that > ;2| 7 = 1

1=) mpy=1=p1—Ba(l = B1) — Ba(1 = B1)(1 — f2) — -
k=1

=(1—=pB1)1—pP2—P3(1—=P2)—---)
=[[a-80=0
k=1

> Let ¢ ~ Go,Vk, G = ;2| Tpdg, has a clean definition as
a random measure. In fact,

G ~ DP(CYOG()).
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Graphical Model Representations

Go

@ ——() 9 ..

Oo
O -

A

‘I ||H| || oo

\
AN

Polya urn construction

Qo

34/45

O

Stick breaking construction
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Dirichlet Process Mixture Model 35/45

» Now we can use a Dirichlet process as the prior for an
unknown mixture distribution (with potentially infinite
mixture components).

» Suppose we have z1,...,x, observations from some
unknown distribution.

» We can model the unknown distribution of z as a mixture
of simple distributions of the form f(-|6).

» We denote the mixing distribution over # as G and let the
prior over G be a Dirichlet process

z|0; ~ f(6;)
0;|G ~G
G NDP(aoGo)
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Samples from DP Mixture Prior 36/45

» Multiple subjects can be mapped to the same ¢. This
creates a clustering of subjects.

» The following graphs shows 4 different data sets (n = 200)
randomly generated from distributions sampled from
Dirichlet process mixture priors with a.
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Inference: Collapsed Gibbs Sampler 37/45

» We can integrate out G to get the CRP. Note that the
CRP is exchangeable, which induces the conditional priors
(=) —i
o K (—1)

m
0 G (6; k5
n—14ag O(ZH—; n—14ag gy "

p(6;]0_;, 0, Go) =

» Let z; be the cluster allocation of the i-th data point. The
collapsed Gibbs sampler alternates between

» update z;
(=1) £, 4(=19) (1)
i:k iy Z—i . my, f($z|¢k ) kﬁK ‘
p(z |i, 2—i, P1iK) o { o o) = K9 1
» update ¢y

i:z;=k

> If GGy is conjugate to f, the above steps can be evaluated

accurately. >
Gy e 7 X 2
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Sampling The Concentration Parameter 38/45

» For the concentration parameter ag, we have

x_ I'(ao)

p(K|ag) o< o T(ao+ 1)

where K is the number of unique ¢’s (e.g., the number of
clusters).

» Therefore, given K and the prior distribution P(ag) we can
sample from the posterior distribution of g using the MH
algorithm or the Gibbs sampling method of Escobar and
West (1995).
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Problems with The Collapsed Gibbs Sampler 39/45

» We are only updating one data point at a time.

» Imagine two “true” clusters are merged into a single
cluster, a single data point is unlikely to “break away”.

> Getting to the true distribution involves going through low
probability states, i.e., mixing can be slow.

» If the likelihood is not conjugate, integrating out parameter
values for new features can be difficult.

» Neal (2000) offers a variety of algorithms.
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Truncated Dirichlet Processes 40/45

» The stick-breaking representation orders the mixture
components so that the weights are stochastically
decreasing. For a sufficiently large T, we will have
Y kst Tk~ 0.

» Therefore, we can truncate the stick-breaking construction
at a fixed value T and let S = 1.

» This implies 7, = 0,Vk > T, and the distribution of

T
Gr =Y Tiby,
k=1

is known as a truncated Dirichlet process.
» Variational distance between distributions of marginals

from a DP and from its truncation at 1" is approximately
dnexp(—(T —1)/ap). T doesn’t have to be very large to

get a good approximation. @ N i
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Blocked Gibbs Sampler 41/45

» State of the Markov chain: (51.7-1, ¢1.7, 21:n)-
» Update z; by multinomial sampling with

p(zi = k|B, ¢, ;) o< mp f (x| dr)
» Update 8 by sampling from the conditional posterior
Br ~ Beta(1l + my, ag + Zj>k m;)
» Update ¢ by sampling from the conditional posterior

p(¢k|21:n,$1:n) X G0(¢k) H f($l‘¢k)

i:z;=k
» One can monitor max; z; to verify that truncation at T is

ez x Y

good enough, and increase T if necessary.
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Variational Inference for DP Mixtures 42/45

> We can also use truncated steak-breaking representation to
form a mean field approximation of DP mixtures

n

q9(8,6,2) = | [ azilw:) Hq Okl 7r) H q(Br|e)

i=1 k=1

» For a conjugate DP mixture in the exponential family

n n
%1=1+Z. Wi ks 7k2=010+zi:12j>kwi,j
n
Tkl—)\1+z w; kb (i), Tk,2:A2+Zi:1w

w; ) < exp(Sk)
where

Sk =ElogBe+)  _ Elog(l - f)) +E¢%§t(xz> EA(cbk)
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Example: DP Gaussian Mixture 43/45

» The approximate predictive distribution given by
variational inference at different stages of the algorithm.
The data are 100 points generated by a Gaussian DP
mixture model with fixed diagonal covariance.

\\) \‘
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