
Bayesian Theory and Computation

Lecture 17: Gaussian Processes

Cheng Zhang

School of Mathematical Sciences, Peking University

May 18, 2022



Introduction 2/43

▶ While parametric models can be powerful, choosing
appropriate parametric models for certain data sets can be
challenging.

▶ In the following lectures, we will discuss some Bayesian
non-parametric models that are capable of dealing with
data sets with extremely complicated structures.

▶ We start with Gaussian processes.
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▶ Guess the parametric form of a function that could fit the
data

fw(x) =


wTx, Linear model
wTϕ(x), Linear model with some basis functions
g(wTϕ(x)), Nonlinear model

▶ For the real data, we could explicitly account for noise in
our model

y(x) = fw(x) + ϵ(x)

▶ When taking ϵ(x) = N (0, σ2) for i.i.d. additive Gaussian
noise, we have

p(y(x)|x,w, σ2) = N (y(x)|fw(x), σ2)

Therefore, we can find MLE for w and σ2.
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Parametric models
▶ Assume that all data can be represented using a fixed,

finite number of parameters.
▶ Examples: Mixture of Gaussians, linear/polynomial

regression, neural nets, etc.

Nonparametric models

▶ Number of parameters can grow with sample size.
▶ Number of parameters may be random.
▶ Examples: kernel density estimation.

Bayesian nonparameterics

▶ Allow for an infinite number of parameters a priori.
▶ Models of finite datasets will have only finite number of

parameters.
▶ Other parameters are integrated out.
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▶ A parametric likelihood: x ∼ p(·|θ)
▶ Prior on θ: π(θ)

▶ Posterior distribution

p(θ|x) = p(x|θ)π(θ)∫
p(x|θ)π(θ)dθ

∝ p(x|θ)π(θ)

Examples:

▶ Gaussian distribution prior + Gaussian likelihood →
Gaussian posterior distribution

▶ Dirichlet distribution prior + Multinomial likelihood →
Dirichlet posterior distribution

▶ Sparsity-inducing prior + some likelihood models → Sparse
Bayesian inference
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▶ A nonparametric likelihood: x ∼ p(·|M)

▶ Prior on M: π(M)

▶ Posterior distribution

p(M|x) = p(x|M)π(M)∫
p(x|M)π(M)dM

∝ p(x|M)π(M)

Examples:

▶ Gaussian Processes

▶ Dirichlet Processes

▶ Indian Buffet Processes
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▶ Consider a simple linear model

f(x) = a0 + a1x, a0, a1 ∼ N (0, 1)
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▶ We are interested in the distribution over functions induced
by the distribution over parameters.

▶ In fact, we can characterize the properties of these
functions directly.

f(x|a0, a1) = a0 + a1x, a0, a1 ∼ N (0, 1)

E(f(x)) = E(a0) + E(a1)x = 0

Cov(f(u), f(v)) = E(f(u)f(v))− E(f(u))E(f(v))
= E(a20 + a0a1(u+ v) + a21uv)− 0

= 1 + uv.
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▶ Therefore, any collection of values has a joint Gaussian
distribution. Note that the randomness comes from the
function f , not from x.

f(x1), f(x2), . . . , f(xN ) ∼ N (0,K)

Kij = Cov(f(xi), f(xj)) = k(xi, xj) = 1 + xixj

▶ Definition: A Gaussian process (GP) is a collection of
random variables, any finite number of which have a joint
Gaussian distribution. We write f(x) ∼ GP(m, k) to mean

f(x1), f(x2), . . . , f(xN ) ∼ N (µ,K)

µi = m(xi), Kij = k(xi, xj)

for any collection of input values x1, . . . , xN . In other
words, f is a GP with mean function m(x) and covariance
kernel k(xi, xj).
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▶ Consider a linear model with some basis function

fw(x) = wTϕ(x), p(w) = N (0,Σw)

▶ Moments of the induced distribution over functions

E(fw(x)) = m(x) = E(wT )ϕ(x) = 0

Cov(f(xi), f(xj)) = k(xi, xj)

= E(fw(xi)fw(xj))− E(fw(xi))E(fw(xj))
= ϕ(xi)

TE(wwT )ϕ(xj)− 0

= ϕ(xi)
TΣwϕ(xj)

▶ fw(x) is a Gaussian process, f(x) ∼ N (m, k) with mean
function m(x) = 0 and covariance kernel
k(xi, xj) = ϕ(xi)

TΣwϕ(xj).
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▶ Setting up the model this way, we are putting prior directly
on the relationship between xi and xj as opposed to on
some paremeters that represent this relationship (i.e., we
cut out the middleman).

▶ This is specially useful when we are ultimately more
interested in, and having strong intuition about, the
functions that model our data and their correlations. We
can express these intuitions using a mean function and a
covariance kernel.

▶ Note that the prior here is implicit and reflects our choice
of the functional form.

▶ In the above example, we are assuming the relationship is
linear, In general, we could use other covariance functions
to create nonlinear relationship.
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kRBF(x, x
′) = Cov(f(x), f(x′)) = a2 exp

(
−∥x− x′∥2

2ℓ2

)
▶ One of the most popular kernels, also known as squared

exponential kernel.

▶ Expresses the intuition that function values at nearby
inputs are more correlated than function values at far away
inputs.

▶ The kernel hyparameters a and ℓ control amplitudes and
wiggliness of these functioins.

▶ GPs with an RBF kernel have large support and are
universal approximators.
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kRBF(x, x
′) = Cov(f(x), f(x′)) = a2 exp

(
−∥x− x′∥2

2ℓ2

)
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kRBF(x, x
′) = Cov(f(x), f(x′)) = a2 exp

(
−∥x− x′∥2

2ℓ2

)

Here κ2 = a2, λ = 1/2ℓ2.
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▶ Exponential

k(xi, xj) = τ2 exp

(
−∥xi − xj∥

2ℓ

)
▶ Spherical

k(xi, xj) = τ2
(
1− 3∥xi − xj∥

2θ
+

∥xi − xj∥3

2θ3

)
1∥xi−xj∥≤θ

▶ Matérn

k(xi, xj) =
τ2

Γ(ν)

(
∥xi − xj∥

2ϕ

)ν

Bν(ϕ∥xi − xj∥)

where Bν is the modified Bessel function.

▶ Linear
k(xi, xj) = σ2 + τ2(xi − c)T (xj − c)
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▶ Covariance functions must be positive semi-definite.

▶ Isotrophy/stationary. Covariance may only depends on
distance

k(xi, xj) = c(∥xi − xj∥).

▶ Differentiability. Sample paths f ∼ GP(0, k) may be m
times differentiable. Can you find an example of
non-differentiable Gaussian Process?

▶ Compact support. For any x1, {x2 : k(x1, x2) ̸= 0} is
compact. This provides sparsity in covariance matrix. See
the spherical covariance function for an example.

▶ Different convariance functions can be combined to form
new convariance functions.
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▶ Observed noisy data y = (y(x1), y(x2), . . . , y(xN ))T at
input locations X.

▶ Assume independent Gaussian noises and place a Gaussian
process distribution over noise free functions
f(x) ∼ GP(0, kθ):

p(y|f) = N (y|f, σ2I), p(f |X) = N (0,Kθ(X,X))

▶ We want to infer p(f∗|y,X,X∗) for the noise free function f
evaluated at test points X∗.
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▶ Suppose that(
y1
y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
then

y1|y2 ∼ N (µ1 +Σ12Σ
−1
22 (y2 − µ2),Σ11 − Σ12Σ

−1
22 Σ

T
21)



Gaussian Process Inference 21/43

▶ When combined with test points X∗, the joint distribution
of y and f∗ is(

y
f∗

)
∼ N

(
0,

(
Kθ(X,X) + σ2I Kθ(X,X∗)

Kθ(X∗, X) Kθ(X∗, X∗)

))
▶ Therefore, the conditional predictive distribution is

f∗|X∗, X, y, θ ∼ N (f̄∗,Cov(f∗))

where
f̄∗ = Kθ(X∗, X)(Kθ(X,X) + σ2I)−1y,

Cov(f∗) = Kθ(X∗, X∗)−Kθ(X∗, X)(Kθ(X,X)+σ2I)−1Kθ(X,X∗).
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▶ Specify f(x) ∼ GP(0, k).

▶ Choose kRBF(x, x
′) = a20 exp

(
−∥x−x′∥2

2ℓ20

)
. Choose values for

a0 and ℓ0.

▶ Observe data, look at the prior and posterior over
functions.
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What happened if we increase the length-scale ℓ?
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▶ We can integrate away the entire Gaussian process f(x) to
obtain the marginal likelihood, as a function of kernel
hyperparameters θ alone

p(y|θ,X) =

∫
p(y|f,X)p(f |θ,X)df = N (y|0,Kθ + σ2I)

▶ Maximum likelihood estimate (MLE)

θ̂MLE = argmax
θ

log p(y|θ,X)

▶ Posterior Inference for p(θ|y,X)

p(θ|y,X) ∝ p(y|θ,X)p(θ)

We could use VI/MCMC.
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▶ The log marginal likelihood is

log p(y|θ,X) = logN (y|0,Kθ + σ2I)

= −1

2
yT (Kθ + σ2I)−1y − 1

2
log |Kθ + σ2I| − N

2
log(2π)

▶ The slowest components are the inversion (Kθ + σ2I)−1

and determinant |Kθ + σ2I|, both are O(N3).
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Three Families of Approaches

▶ Approximate non-parametric kernels in a finite basis ‘dual
space’. Requires O(m2n) computations and O(m) storage
for m basis functions. Examples: SSGP, Random Kitchen
Sinks, Fastfood.

▶ Inducing point based sparse approximations. Examples:
SoR, FITC, KISS-GP.

▶ Exploit existing structure in K to quickly (and exactly)
solve linear systems and log determinants. Examples:
Toeplitz and Kronecker methods.
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▶ Let’s recall the log-likelihood of GP

log p(y|X) = logN (y|0,Kθ + σ2I)

▶ With redundant data, the covariance matrix Kθ becomes
low rank.

▶ What about low rank approximation?
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▶ Let’s randomly pick a subset from training data
{z1, z2, . . . , zM}.

▶ Approximation the covariance matrix Kθ(X,X) by K̃

K̃ = KxzK
−1
zz Kzx

where Kxz = Kθ(X,Z) and Kzz = Kθ(Z,Z).

▶ Note that K̃ ∈ RN×N , Kxz ∈ RN×M and Kzz ∈ RM×M .

▶ The log-likelihood is approximated by

log p(y|X, θ) ≈ logN (y|0,KxzK
−1
zz Kzx + σ2I).
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▶ The computation computational complexity reduces to
O(NM2) via the Woodbury formula

(KxzK
−1
zz Kzx+σ2I)−1 = σ−2I−σ−4Kxz(Kzz+σ−2KzxKxz)

−1Kzx

▶ The above approach is called Nyström approximation by
Williams and Seeger (2001).

▶ Note that the approximation is directly done on the
covariance matrix without the concept of inducing points
and becomes exact if the whole data set is taken

KxxK
−1
xx Kxx = Kxx

▶ The subset selection is done randomly.
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An example of a posterior obtained from many noisy
observations (left) and from very frew noiseless observations
(right).

▶ The GP prior places strong constraints on what values
neighouring output can take, making it possible to obtain
good approximations from only a few observations at
appropriate positions, i.e., inducing points.
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▶ We can approximate GP through M < N inducing points
Xu to obtain low rank approximations to the joint prior

p(f, f∗) =

∫
p(f, f∗, fu)dfu =

∫
p(f, f∗|fu)p(fu)dfu

≈
∫

q(f |fu)q(f∗|fu)p(fu)dfu

where p(fu) = N (0,Kuu), Kuu = Kθ(Xu, Xu).

▶ Now that f and f∗ are conditionally independent given fu,
they can only communicate through fu, and fu therefore
induces the dependencies between f and f∗.

▶ Different inducing point methods correspond to different
additional assumptions about the two inducing conditionals
q(f |fu), q(f∗|fu).
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▶ The Subset of Regressor (SoR) algorithm was given by
Silverman (1985), and later on adapted by Smola and
Bartlett (2001) for sparse Gaussian process regression.

▶ In SoR, f and f∗ are assumed to deterministically depend
on fu

f = KxuK
−1
uu fu, f∗ = K∗uK

−1
uu fu, fu ∼ N (0,Kuu).

▶ The effective prior implied by the SoR approximation is

qSoR(f, f∗) = N
(
0,

(
Qxx Qx∗
Q∗x Q∗∗

))
where Qab = KauK

−1
uuKub.
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▶ Note that the exact conditionals are

p(f |fu) = N (KxuK
−1
uu fu,Kxx −Qxx)

p(f∗|fu) = N (K∗uK
−1
uu fu,K∗∗ −Q∗∗)

▶ The approximate conditionals in SoR can be viewed as

qSoR(f |fu) = N (KxuK
−1
uu fu, 0), qSoR(f∗|fu) = N (K∗uK

−1
uu fu, 0)

▶ Remark: The SoR approximation is equivalent to exact
inference in the degenerated Gaussian process with
covariance function

kSoR(xi, xj) = k(xi, u)K
−1
uu k(u, xi).
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▶ Snelson and Ghahramani (2006) proposed the Sparse
Pseudo-input Gaussian process (SPGP), later referred to as
Fully independent training conditional (FITC).

▶ Augment the training data (X, y) with pseudo data fu at
location Xu.

p

((
y
fu

))
= N

(
0,

(
Kxx + σ2I Kxu

Kux Kuu

))
▶ We can rewrite the joint probability as

p(y, fu|X,Xu) = p(y|fu, X,Xu)p(fu|Xu)

where p(fu|Xu) = N (0,Kuu) and

p(y|fu, X,Xu) = N (KxuK
−1
uu fu,Kxx −KxuK

−1
uuKux + σ2I).
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▶ So far, no approximation has been made. p(y|X) would
still be expensive to evaluate.

▶ The FITC approximation assumes

q(y|fu, X,Xu) = N (KxuK
−1
uu fu,Λ + σ2I),

where Λ = diag{Kxx −KxuK
−1
uuKux}.

▶ Note that this implies the fully conditional independence of
training data {yi}Ni=1 given fu

q(y|fu, X,Xu) =

N∏
i=1

p(yi|fu, X,Xu)
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▶ Integrate out fu we can get an approximate marginal
likelihood

p̃(y|X,Xu) = N (0,KxuK
−1
uuKux + Λ+ σ2I)

▶ For the predictive distribution of f∗ at x∗, we can integrate
with the posterior

q(f∗|x∗, y,X,Xu) =

∫
p(f∗|x∗, fu, Xu)q(fu|y,X,Xu)dfu

▶ The approximate conditionals in FITC is

qFITC(f |fu) =
N∏
i=1

p(fi|fu) = N (KxuK
−1
uu fu, diag(Kxx −Qxx))

qFITC(f∗|fu) = p(f∗|fu)
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▶ The effective prior implied by the FITC approximation is

qFITC(f, f∗) = N
(
0,

(
Qxx − diag(Qxx −Kxx) Qx∗

Q∗x K∗∗

))
▶ Remark: If the assumption of fully independence is

extended to the test conditional, the FITC approximation
is equivalent to exact inference in a non-degenerated
Gaussian process with covariance function

kFIC(xi, xj) = kSoR(xi, xj) + δi,j(k(xi, xj)− kSoR(xi, xj)).

▶ The inducing points Xu can be optimized via gradient
optimization.
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▶ In case of non-Gaussian likelihoods, we can use the
Gaussian process prior over a continuous latent function u
which determines the likelihood p(y|u, ϕ) through a link
function, just as in generalized linear models.

▶ For example, if the outcome variable y is binary, we can
use the following logistic model

p(yi = 1|u(xi)) =
1

1 + exp(−u(xi))

▶ We can use a multinomial logit model for outcome
variables with multiple categories.
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▶ Here, we are using a GP model to estimate the underlying
firing rates of a neuron (i.e., yt = 1 when the neuron fires,
yt = 0 otherwise).

▶ The dashed line shows the true firing probability and the
plus signs show the firing time.
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When p(y|u,X) is not Gaussian, we lack closed-form expression
for posterior and need approximation approaches.

p(u|y,X) ∝ p(y|u,X)p(u|X)

▶ MCMC. Use GP-specific samplers (e.g., elliptic slice
sampler). Due to the dependency between the latent values
and the hyper-parameters, mixing can be slow.

▶ Laplace approximation.
▶ Find posterior mode û using any gradient-based optimizer.
▶ Use normal approximation to posterior

p(u|y,X) ≈ N (û, Σ̂)

▶ When the likelihood contribution is heavily skewed (e.g.,
logistic model), expectation propagation (EP)/variational
inference (VI) can be used.
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▶ Gaussian processes (GPs) are Bayesian nonparametric
models that can represent distributions over smooth
functions.

▶ Using expressive covariance kernel functions, GPs can
model a variety of data (scalar, vector, sequential,
structured, etc.).

▶ Inference can be done fully analytically (in case of
Gaussian likelihood).

▶ Inference and learning are very computationally costly
since exact methods require large matrix inversions.

▶ There has been a variety of approximation methods to
scale up GPs to large data sets.
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