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Motivation 2/38

▶ Large scale datasets are becoming more commonly
available across many fields. Learning complex models
from these datasets is the future

▶ While many modern MCMC methods have been proposed
in recent years, they usually require expensive computation
when the data size is large

▶ In this lecture, we will discuss recent development on
Markov chain Monte Carlo methods that are applicable to
large scale datasets
▶ Best of both worlds: scalability, and Bayesian protection

against overfitting



Stochastic Differential Equations 3/38

▶ Stochastic differential equations are widely used to model
dynamical systems with noise

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt

where B denotes a Wiener process/Brownian motion

▶ Now suppose the probability density for Xt is p(x, t), we
are interested in how p(x, t) evolves along time

▶ For example, does it converge to some distribution? If it
does, how can we find it out?



Fokker-Planck Equation 4/38

▶ Consider Yt = g(Xt), where g is a test function with certain
regularity. By Itô’s formula

dYt =

(
∇g(Xt) · µ+

1

2
tr(∇2g(Xt)σσ

T )

)
dt+∇g(Xt)σdBt

▶ Integrate both side on time interval [t, t+ h] and take
expectation

E
Yt+h − Yt

h
=

1

h

∫ t+h

t
E
(
∇g · µ+

1

2
tr(∇2gσσT )

)
ds

▶ Let h → 0 and assume g(x) → 0 as ∥x∥ → ∞∫
g(x)

∂p(x, t)

∂t
dx =

∫
g(x)

(
−∇ · (µp) +∇2 : (

1

2
σσT p)

)
dx

(1)
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▶ It turns out the p(x, t) satisfies the Fokker-Planck equation
(also known as the Kolmogorov forward equation)

∂p(x, t)

∂t
= −

∑
i

∂

∂xi
(µi(x, t)p(x, t))+

∑
i,j

∂2

∂xi∂xj
(Dij(x, t)p(x, t))

where D = 1
2σσ

T is the diffuse tensor

▶ Example: Weiner process dXt = dBt

∂p(x, t)

∂t
=

1

2

∂2

∂x2
p(x, t)

If p(x, 0) = δ(x), the solution is p(x, t) =
1√
2πt

e−
x2

2t



Challenges From Massive Datasets 6/38

▶ Suppose that we have a large number of data items

D = {x1, x2, . . . , xN}

where N ≫ 1

▶ The log-posterior (up to a constant) is

log p(θ|X) = log p(θ) +

N∑
i=1

log p(xi|θ) ∼ O(N)

▶ How to reduce this computation in MCMC without
damaging the convergence to the target distribution?
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▶ Also known as stochastic approximation

▶ At each iteration
▶ Get a subset (minibatch) xt1 , . . . , xtn of data items where

n ≪ N
▶ Approximate gradient of log-posterior using the subset

∇ log p(θt|X) ≈ ∇ log p(θt) +
N

n

n∑
i=1

∇ log p(xti |θt)

▶ Take a gradient step

θt+1 = θt +
ϵt
2

(
∇ log p(θt) +

N

n

n∑
i=1

∇ log p(xti |θt)

)
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▶ Major requirement for convergence on step-sizes

∞∑
t=1

ϵt = ∞,

∞∑
t=1

ϵ2t < ∞

▶ Intuition
▶ Step sizes cannot decrease too fast, otherwise will not be

able to explore parameter space
▶ Step sizes must decrease to zero, otherwise will not converge

to a local mode
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▶ First order Langevin dynamics can be described by
the following stochastic different equation

dθt =
1

2
∇ log p(θt|X)dt+ dBt

▶ The above dynamical system converges to the target
distribution p(θ|X) (easy to verify via the Fokker-Planck
equation)

▶ Intuition
▶ Gradient term encourages dynamics to spend more time in

high probability areas
▶ Brownian motion provides noise so that dynamics will

explore the whole parameter space



Numerical Approximation 10/38

▶ First order Euler discretization

θt+1 = θt +
ϵ

2
∇ log p(θt|X) + ηt, ηt = N (0, ϵ)

▶ Amount of noise is balanced to gradient step size

▶ With finite step size, there will be discretization errors. We
can add MH correction step to fix it, and this is MALA!

▶ As step size ϵ → 0, acceptance rate goes to 1
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▶ Introduced by Welling and Teh (2011)

▶ Idea: use stochastic gradients in Langevin dynamics

θt+1 = θt +
ϵt
2
g(θt) + ηt, ηt = N (0, ϵt)

g(θt) = ∇ log p(θt) +
N

n

n∑
i=1

∇ log p(xti |θt)

▶ Update is just stochastic gradient ascent plus Gaussian
noise

▶ Noise variance is balanced with gradient step sizes

▶ require step size ϵt decrease to 0 slowly
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▶ Controllable stochastic gradient noise. The stochastic
gradient estimate g(θt) is unbiased, but it introduces noise

g(θt) = ∇ log p(θ|X) +N (0, V (θt))

▶ Stochastic gradient noise ∼ N (0,O(ϵ2t ))
▶ Injected noise ηt ∼ N (0, ϵt)

▶ When ϵt → 0
▶ Stochastic gradient noise will be dominated by injected

noise ηt, so can be ignored. SGLD then recovers Langevin
dynamics updates with decreasing step sizes

▶ MH acceptance probability approaches 1, so we can ignore
the expensive MH correction step

▶ If ϵt approaches 0 slowly enough, the discretized Langevin
dynamics is still able to explore the whole parameter space



Examples: Mixture of Gaussian 13/38

θ1 ∼ N (0, σ2
1), θ2 ∼ N (0, σ2

2)

xi ∼
1

2
N (θ1, σ

2
x) +

1

2
N (θ1 + θ2, σ

2
x)



Examples: Mixture of Gaussian 14/38

Noise and rejection probability



Examples: Logistic Regression 15/38

Log probability vs epoches Test accuracy vs epoches
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▶ Now that stochastic gradient scales MALA, it seems
straightforward to use stochastic gradient for HMC

dθ = M−1rdt

dr = g(θ)dt = −∇U(θ)dt+
√

ϵV (θ)dBt

▶ However, the resulting dynamics does not leave p(θ, r)
invariant (can be verified via Fokker-Planck equation)

▶ This deviation can be saved by MH correction, but that
leads to a complex computation vs efficiency trade-off
▶ Short runs reduce deviation, but requires more expensive

HM steps and does not full utilize the exploration of the
Hamiltonian dynamics

▶ Long runs lead to low acceptance rates, waste of
computation



Example: Naive Stochastic Gradient HMC Fails 17/38

U(θ) = −2θ2 + θ4
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▶ We can introduce friction into the dynamical system to
reduce the influence of the gradient noise, which leads to
the second order Langevin dynamics

dθ = M−1rdt

dr = −∇U(θ)dt− CM−1rdt+
√
2CdBt

(2)

▶ Consider the joint space z = (θ, r), rewrite (2)

dz = −[D +G]∇H(z)dt+
√
2DdBt

where

G =

[
0 −I
I 0

]
, D =

[
0 0
0 C

]
▶ p(θ, r) ∝ exp(−H(θ, r)) is the unique stationary

distribution of (2)
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▶ Introduced by Chen et al (2014)

▶ Use stochastic gradient in the second order Langevin
dynamics. In each iteration
▶ resample momentum r(t) ∼ N (0,M) (optional),

(θ0, r0) = (θ(t), r(t))
▶ simulate dynamics in (2)

θi = θi−1 + ϵtM
−1ri−1

ri = ri−1 + ϵtg(θi) − ϵtCM−1ri−1 +N (0, 2Cϵt)

▶ update the parameter (θ(t+1), r(t+1)) = (θm, rm), no MH
correction step

▶ Similarly, the stochastic gradient noise is controllable, and
when ϵt → 0, SGHMC recovers the second order Langevin
dynamics
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▶ Let v = ϵM−1r, we can rewrite the update rule in SGHMC

∆v = ϵ2M−1g(θ)− ϵM−1Cv +N (0, 2ϵ3M−1CM−1)

∆θ = v

▶ Define η = ϵ2M−1, α = ϵM−1C, the update rule becomes

∆v = ηg(θ)− αv +N (0, 2αη)

∆θ = v

▶ If we ignore the noise term, this is basically SGD with
momentum where η is the learning rate and 1− α the
momentum coefficient

▶ This connection can be used to guide our choices of
SGHMC hyper-parameters
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Examples: Bivariate Gaussain With Correlation 22/38

SGHMC vs SGLD on a bivariate Gaussian with correlation

U(θ) =
1

2
θTΣ−1θ, Σ−1 =

(
1 0.9
0.9 1

)



Examples: MNIST Dataset 23/38



A Recap on SGHMC 24/38

▶ Stochastic gradient in SGHMC introduces noise. With step
size ϵ, the corresponding dynamics is

dθ = M−1rdt

dr = −∇U(θ)dt− CM−1dt+

√
2(C +

1

2
ϵV (θ))dBt

▶ If somehow we correct the mismatch between friction
coefficient and the real noise level, we can improve the
approximation accuracy for a finite ϵ

▶ But how can we do that given that the noise V (θ) is
unknown?



Nosé-Hoover Thermostat 25/38

▶ One missing key fact is the thermal equilibrium condition:

p(θ, r) ∝ exp (−(U(θ) +K(r))/T ) ⇒ T =
1

d
E(rT r)

▶ Unfortunately, using stochastic gradients destroys the
thermal equilibrium condition

▶ We can introduce an additional variable ξ that adaptively
controls the mean kinetic energy, and use the following
dynamics

dθ = rdt, dr = g(θ)dt− ξrdt+
√
2AdBt

dξ = (
1

d
rT r − 1)dt (3)

▶ (3) is known as the Nosé-Hoover thermostat in statistical
physics.



Stochastic Gradient Nosé-Hoover Thermostat 26/38

▶ Introduced by Ding et al (2014)

▶ The algorithm
▶ Initialized θ0, r0 ∼ N (0, I), and ξ0 = A
▶ For t = 1, 2, . . .

rt = rt−1 + ϵtg(θt−1)− ϵtξt−1rt−1 +
√
2AN (0, ϵ)

θt = θt−1 + ϵtrt

ξt = ξt−1 + ϵt((r
(t))T r(t)/d− 1)

▶ The thermostat ξ helps to adjust the friction according to
the real noise level, and maintains the right mean kinetic
energy
▶ When mean kinetic energy is high, ξ get bigger, increasing

friction to cool down the system
▶ When mean kinetic energy is low, ξ get smaller, reducing

friction to heat up the system



Example: A Double-well Potential 27/38

U(θ) = (θ + 4)(θ + 1)(θ − 1)(θ − 3)/14 + 0.5

g(θ)ϵ = −∇U(θ)ϵ+N (0, 2Bϵ), ϵ = 0.01, B = 1

For SGNHT, we set A = 0



Mathematical Foundation 28/38

▶ Consider the following stochastic differential equation

dΓ = v(Γ)dt+N (0, 2D(θ)dt)

where Γ = (θ, r, ξ).

▶ p(Γ) ∝ exp(−H(Γ)) is the stationary distribution if

∇ · (p(Γ)v(Γ)) = ∇∇T : (p(Γ)D)

We can construct H such that the marginal distribution is
p(θ) ∝ exp(−U(θ)).

▶ For SGNHT, H(Γ) = U(θ) + 1
2r

T r + d
2(ξ −A)2

v(Γ) =

 r
−∇U(θ)− ξr
rT r/d− 1

 , D(θ) =

0 0 0
0 A 0
0 0 0





A Recipe for Continuous Dynamics MCMC 29/38

▶ Introduced by Ma et al (2015)

▶ Assume target distribution p(θ|X) is the marginal
distribution of p(z) ∝ exp(−H(z))

▶ We consider the following stochastic differential equation

dz = −(D(z) +Q(z))∇H(z)dt+ Γ(z)dt+
√

2D(z)dBt

Γi(z) =

d∑
j=1

∂

∂zj
(Dij(z) +Qij(z))

▶ Q(z) is a skew-symmetric curl matrix
▶ D(z) denotes the positive semidefinite diffusion matrix

▶ The above dynamics leaves p(z) invariant



The Recipe is Complete 30/38

All existing samplers can
be written in framework

▶ HMC

▶ Riemannian HMC

▶ Langevin Dynamics
(LD)

▶ Riemannian LD

Any valid sampler has a
D and Q in the
framework

Adapted from Emily Fox 2017
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A Practical Algorithm 31/38

▶ Consider ϵ-discretization

zt+1 = zt−ϵt((D(zt)+Q(zt))∇H(zt)+Γ(zt))+N (0, 2ϵtD(zt))

▶ The gradient computation in ∇H(zt) could be expansive,
can be replaced with stochastic gradient ∇H̃(zt)

zt+1 = zt−ϵt((D(zt)+Q(zt))∇H̃(zt)+Γ(zt))+N (0, 2ϵtD(zt))

▶ The gradient noise is still controllable

∇H̃(zt) = ∇H(zt) + (N (0, V (θ)), 0)T

▶ stochastic gradient noise ∼ N (0, ϵ2tV (θ))
▶ injected noise ∼ N (0, 2ϵtD(zt))



Stochastic Gradient Riemann HMC 32/38

▶ As shown before, previous stochastic gradient MCMC
algorithms all cast into this framework

▶ Moreover, the framework helps to develop new samplers
without requiring significant physical intuition

▶ Consider H(θ, r) = U(θ) + 1
2r

T r, modify D and Q to
account for the geometry

D(θ, r) =

(
0 0
0 G(θ)−1

)
, Q(θ, r) =

(
0 −G(θ)−1/2

G(θ)−1/2 0

)
Note that this works for any positive definite G(θ), not just
the fisher information metric



Streaming Wikipedia Analysis 33/38

Applied SGRHMC to online LDA
- each entry was analyzed on the fly



Alternative Methods for Scalable MCMC 34/38

▶ Reduce the computation in MH correction step via subsets
of data (Korattikara et al 2014)

▶ Divide and conquer: divide the entire data set into small
chunks, run MCMC in parallel for these subsets of data,
and merge the results for the true posterior approximation
(Scott et al 2016)

▶ Using deterministic approximation instead of stochastic
gradients. This may introduce some bias, but remove the
unknown noise for gradient estimation, allowing for better
exploration efficiency
▶ Gaussian processes: Rasmussen 2003, Lan et al 2016
▶ Reproducing kernel Hilbert space: Strathmann et al 2015
▶ Random Bases: Zhang et al 2017
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