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MCMC Diagnostics 2/37

I MCMC would converge to the target distribution if run
sufficiently long

I However, it is often non-trivial to determine whether the
chain has converged or not in practice

I Also, how do we measure the efficiency of MCMC chains?

I In what follows, we will discuss some practical advice for
coding MCMC algorithms



Graphical Diagnostics: Mixing Rate 3/37

Monitor convergence by plotting samples from multiple MH
runs (chains)

I If the chains are well-mixed (left), they are probably
converged

I If the chains are poorly-mixed (right), we may need to
continue burn-in



Graphical Diagnostics: Autocorrelation 4/37

I An autocorrelation plot summarizes the correlation in the
sequence of a Markov chain at different iteration lags

I A chain that has poor mixing will exhibit slow decay of the
autocorrelation as the lag increases



Effective Sample Size 5/37

I Since MCMC samples are correlated, effective sample size
are often used to measure the efficiency when MCMC
samples are used for estimation instead of independent
samples

I The effective sample size (ESS) is defined as

ESS =
n

1 + 2
∑∞

k=1 ρ(k)

where ρ(k) is the autocorrelation at lag k

I ESS are commonly used to compare the efficiency of
competing MCMC samplers for a given problem. Larger
ESS usually means faster convergence



Multiple Chains 6/37

I One of the hardest problem to diagnose is whether or not
the chain has become stuck in one or more modes of the
target distribution

I In this case, all convergence diagnostics may indicate that
the chain has converged, though it does not

I A partial solution: run multiple chains and compare the
within- and between-chain behavior



Auxiliary Variable Methods 7/37

I Auxiliary variable strategies can be used to improving
mixing of Markov chains

I When standard MCMC methods mix poorly, one potential
remedy is to augment the state space of the variable of
interest

I This approach can lead to chains that mix faster and
require less tuning than the standard MCMC methods

I Main idea: construct a Markov chain over (X,U) (U is the
auxiliary variable) with stationary distribution
marginalizes to the target distribution of X

I As we will see later, this includes a large family of modern
MCMC methods



Parallel Tempering 8/37

I Suppose that we have a challenging target distribution
f(x) ∝ exp(−U(x))

I We can introduce temperatures to construct a sequence of
distributions that are easier to sample from

fk(x) ∝ exp (−U(x)/Tk) , k = 0, . . . ,K

where 1 = T0 < T1 < . . . < TK
I When simulating Markov chains with different temperature
T , the chain with high temperature (hot chain) is likely to
mix better than the chain with cold temperature (cold
chain)

I Therefore, we can run parallel chains and swap states
between the chains to improve mixing



Double-well Potential Distribution 9/37

fT (x) ∝ exp(−(x2 − 1)2/T ), T = 1/γ



Coupling Parallel Chains 10/37

We run parallel Markov chains for distributions with different
temperatures. In each iteration

I Follow regular Metropolis steps in each chain to get new

states x
(t)
0 , . . . , x

(t)
K

I Select two temperatures, say (i, j), i < j, and swap the
states

x
(t)
0 , . . . , x

(t)
i , . . . , x

(t)
j , . . . x

(t)
K → x

(t)
0 , . . . , x

(t)
j , . . . , x

(t)
i , . . . x

(t)
K

I Accept the swapped new states with the following
probability

min
(

1, fi(x
(t)
j )fj(x

(t)
i )/fi(x

(t)
i )fj(x

(t)
j )
)



Parallel Tempering 11/37

I Both the within-chain Metropolis updates and the
between-chain swap preserves

p(x0, . . . , xK) ∝ f0(x0)f1(x1) . . . fK(xK)

I Therefore, the joint distribution of (x
(t)
0 , . . . , x

(t)
K ) will

converge to p(x), and the marginal distribution of x0 (cold
chain) is the target distribution

I There are many ways to swap chains. For example, we can
pick a pair of temperatures uniformly at random or only
swap chains with successive temperatures

I The design of temperature levels could be crucial for the
performance



Example: Double-well Potential Distribution 12/37



Slice Sampling 13/37

I Slice sampling was introduced by Neal (2003) to accelerate
mixing of Metropolis (or MH)

I It is essentially a Gibbs sampler in the augmented space
(X,U) with density

f(x, u) = f(x)f(u|x)

where U is the auxiliary variable and f(u|x) is designed to
be a uniform distribution U(0, f(x))



Slice Sampling 14/37

I For this purpose, slice sampling alternates between two
steps:
I Given the current state of the Markov chain, x, we

uniformly sample a new point u from the interval (0, f(x))

U |x ∼ U(0, f(x))

I Given the current value of u, we uniformly sample from the
region S = {x : f(x) > u}, which is referred to as the slice
defined by u

X|u ∼ U(S)

I As mentioned by Neal (2003), in practice it is safer to
compute g(x) = log(f(x)), and use the auxiliary variable
z = log(u) = g(x)− e, where e has exponential distribution
with mean one, and define the slice as S = {x : z < g(x)}



Move Between Modes with Slice Sampler 15/37

I One advantage of slice sampling is for sampling from
multimodal distributions

I Unlike standard Metropolis (or MH) that struggles
between distant modes, sampling from the slice allows us to
easily jump between different modes



Slice Sampling in Practice 16/37

I Sampling an independent point uniformly from S might be
difficult. In practice, we can substitute this step by any
update that leaves the uniform distribution over S invariant

I There are several methods to perform this task

I Here, we introduce a simple but effective procedure that
consists of two phases:
I Stepping-out. A procedure for finding an interval around

the current point
I Shrinkage. A procedure for sampling from the interval

obtained

I For a detail description of these methods, see Neal (2003)



Slice Sampling- Illustration 17/37

I Sampling u ∼ U(0, f(x0)) and stepping out (of size w) until
we reach points outside the slice



Slice Sampling- Illustration 18/37

I Shrinkage of interval to a point, x′, which is sampled
(uniformly) from the interval but it has f(x′) < y



Slice Sampling- Illustration 19/37

I Continue shrinkage until we reach a point x1 such that
y < f(x1). We accept x1 as our new sample



Within-group Exchangeability 20/37

I Consider the housing price, yi, for a sample of 4 bedroom
houses in the US. We might regard this sample as
exchangeable if all we know is the price of each house.

I However, if we also know in which state the house is
located, it might be more appropriate to assume
exchangeability only within each group since the price
distribution would probably be different from one state to
another

I In this case, the price is represented by yij , where j is an
index for the states. The index is not completely
uninformative now, since we expect different distributions
for different j.

I We can still use deFinetti’s theorem and consider each
sub-sample, (i.e., for a fixed j) as iid given their own
specific parameteric model with parameter θ.



Within-group Exchangeability 21/37

I Then, for each state j we have

p(yj |θj) = p(y1j , . . . , ynjj |θj) =
∏nj

i=1
p(yij |θj)

I Therefore, the joint distribution of all samples is

p(y|θ) =
∏J

j=1

∏nj

i=1
p(yij |θj)

I Assuming a normal N (µj , σ
2
j ) for each state, we have

p(y|µ, σ2) =
∏J

j=1

∏nj

i=1
N (yij |µj , σ2j )

I We can further assume all states have the same variance

p(y|µ, σ2) =
∏J

j=1

∏nj

i=1
N (yij |µj , σ2)



Hyperprior 22/37

I Now, as we mentioned before, there exists a prior
distribution over parameters, θ1, θ2, . . . , θJ .

I Similar to y, if we could imagine the infinite sequence of
such θ’s being exchangeable, we can regard them as being
iid samples given the prior distribution p(θ|φ) with the
parameter φ

p(θ|φ) = p(θ1, . . . , θJ |φ) =

J∏
j=1

p(θj |φ)

I φ is referred to as hyperparameter, for which we need to
assume a hyperprior p(φ).



Hyperprior 23/37

I The joint prior distribution of all parameters is now

p(φ, θ) = p(θ|φ)p(φ)

I The posterior distribution of parameters is

p(φ, θ|y) ∝ p(φ, θ)p(y|φ, θ) = p(φ)p(θ|φ)p(y|θ)

I Note that give θ, y becomes independent of φ.



Hierarchical Bayesian Model 24/37

The following figure shows a schematic representation of
hierarchical models in general



Example: US House Prices 25/37

I For the house prices example, we can assume the following
priors

µ0 ∼ N (M,V 2)

µj ∼ N (µ0, τ
2
0 )

σ2 ∼ Inv-χ2(ν0, σ
2
0)

I Here, we are assuming that τ20 is fixed and only µ0 is the
hyperparameter.

I Moreover, we are assuming that the variance σ2 is the same
for all states for simplicity.



Example: US House Prices 26/37

I For this problem, we can use MCMC to obtain samples
from the posterior distribution of σ, µj , and µ0.

I For simplicity, we consider only 5 states. We have sampled
100 houses in each states.

I This graph shows the box plot of the observed values.



Example: US House Price 27/37

I We use the log transformation of prices and assume the
following broad priors for model parameters

σ2 ∼ Inv-χ2(1, 0.52)

µj ∼ N (µ0, 252)

µ0 ∼ N (0, 502)

I Note that these priors are conditionally conjugate so we
can use the Gibbs sampler.



Example: US House Prices 28/37

I Given µ0 and σ2 the problem reduces to 5 independent
normal models with known variance. Given µ0 and σ2 at
each iteration, we can sample from the posterior
distribution of µj .

I Given µj ’s, we also have a conditional conjugate situation
for σ2 with Inv-χ2 posterior distribution. So we can sample
a new σ2.

I Note that since σ2 is common between all states, we use all
the y’s from the 5 states to update σ2.

I Similarly, given the current samples of µj , we again have a
normal model with conditional conjugacy for µ0 (taking
µj ’s as observations) so we can sample a new µ0.

I We repeat the above steps to obtain MCMC samples.



Example: US House Prices 29/37

I At each iteration, given the value of µ0 and σ2, we sample
µj from the following normal distribution

µj |y, µ0, σ2 ∼ N

 µ0
τ20

+
∑

i yij
σ2

1
τ20

+
nj

τ2

,
1

1
τ20

+
nj

σ2


I Given µ = (µ1, . . . , µJ), we sample a new σ2 from

σ2|y, µ ∼ Inv-χ2

(
ν0 + n,

ν0σ
2
0 + νn

ν0 + n

)
where

ν =
1

n

J∑
j=1

nj∑
i=1

(yij − µj)2



Example: US House Prices 30/37

I Given µ = (µ1, . . . , µJ), we sample µ0 from

µ0|µ ∼ N

 M
V 2 +

∑
j µj

τ20
1
V 2 + J

τ20

,
1

1
V 2 + J

τ20


I Notice how using the conditional independence reduces the

complexity of the model.

I For this reason, hierarchical Bayesian models are quite
powerful.



Example: US House Prices 31/37



Example: US House Prices 32/37

The following graph show the 95% posterior intervals, the
posterior expectations (×), the maximum likelihood estimations
(circles), and the posterior expectation of the overall mean µ0
(the green horizontal line).



Example: Latent Dirichlet Allocation 33/37

I Generative model of documents (Blei, Jordan and Ng,
2003). Also broadly applicable to collaborative filtering,
image retrieval, bioinformatics, etc.

I choose a mixture of topics the document: θ ∼ Dir(α)

I choose a topic for each of the document:

zn ∼ Multinomial(θ)

I choose word given the topic: wn|zn, β ∼ p(wn|zn, β)



Bayesian Inference in LDA 34/37

I Use the probability model for LDA, with an additional
Dirichlet prior on φ.

I The complete probability model

wi|zi, φ(zi) ∼ Discrete(φ(zi))

φ ∼ Dirichlet(β)

zi|θ(di) ∼ Discrete(θ(di))

θ ∼ Dirichlet(α)



Collapsed Gibbs Sampling for LDA 35/37

I The joint probability is

p(w, z, φ, θ|α, β) =
∏
i

p(wi|zi, φ(zi))p(φ|β) ·
∏
i

p(zi|θ(di))p(θ|α)

I Due to conjugate priors, we can easily integrate out φ and
θ (T. Griffiths & M. Steyvers, 2004)

p(w|z) =

(
Γ(V β)

Γ(β)V

)K K∏
j=1

∏
w Γ(n

(w)
j + β)

Γ(n
(·)
j + V β)

p(z) =

(
Γ(Kα)

Γ(α)K

)M M∏
d=1

∏
j Γ(n

(d)
j + α)

Γ(n
(d)
· +Kα)

n
(w)
j ← number of times word w assigned to topic j

n
(d)
j ← number of times topic j used in document d



Gibbs Sampling 36/37

I Need full conditional distributions for variables

I We only sample z, whose conditional distributions is

p(zi = j|z−i, w) ∝
n
(wi)
−i,j+β

n
(·)
−i,j+V β

n
(di)
−i,j+α

n
(di)
−i,·+Kα

probability of wi under topic j probability of topic j in document di

I This is nicer than your average Gibbs sampler:
I memory: counts can be cashed in two sparse matrices
I the distributions on φ and θ are analytic given z and w, and

can later be found for each sample
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