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Markov chain Monte Carlo 2/38

» Now suppose we are interested in sampling from a
distribution 7 (e.g., the unnormalized posterior)

» Markov chain Monte Carlo (MCMC) is a method that
samples from a Markov chain whose stationary distribution
is the target distribution 7. It does this by constructing an
appropriate transition probability for m

» MCMC, therefore, can be viewed as an inverse process of
Markov chains

Markov Chains M@rﬂ@@w Chain Monte Carlo

Transition Distribution G Probabilities

Probabilities Distribution

NFIFER

et PEKING UNIVERSITY




Markov chain Monte Carlo 3/38

» The transition probability in MCMC resembles the
proposal distribution we used in previous Monte Carlo
methods.

» Instead of using a fixed proposal (as in importance
sampling and rejection sampling), MCMC algorithms
feature adaptive proposals
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The Metropolis Algorithm 4/38

> Suppose that we are interested in sampling from a
distribution 7, whose density we know up to a constant
P(z) < m(x)

» We can construct a Markov chain with a transition
probability (i.e., proposal distribution) Q(z'|z) which is
symmetric; that is, Q(2|z) = Q(z|z")

» Example. A normal distribution with the mean at the
current state and fixed variance o2 is symmetric since

ez x Y

@

PEKING UNIVERSITY




The Metropolis Algorithm 5/38

In each iteration we do the following

>

>

Draws a sample 2’ from Q(z'|z), where z is the previous
sample

Calculated the acceptance probability

a(a'|z) = min (1, 1;<()>>

P(z’)
P(z)°

Note that we only need to compute the unknown

constant cancels out

Accept the new sample with probability a(z’|z) or remain
at state x. The acceptance probability ensures that, after
sufficient many draws, our samples will come from the true
distribution 7 (z)
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Example: Gaussian Mixture Model
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Adapted from Andrieu, Freitas, Doucet, Jordan, 2003
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The Metropolis Algorithm 7/38

» How do we know that the chain is going to converge to 77

» Suppose the support of the proposal distribution is X' (e.g.,
Gaussian distribution), then the Markov chain is
irreducible and aperiodic.

» We only need to verify the detailed balance condition

7(dz)p(x,dr’) = m(x)dx - Q(2'|zx)a(x|zx)dx’

= x) min m(a’) zdx
= 7m(2)Q(2'|z) 1, (@) )d d
= Q(2'|z) min(n (), 7(2'))dzdz
= Q(z|2) min(w(:/v’), 7(z))drds’
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The Metropolis-Hastings Algorithm 8/38

» It turned out that symmetric proposal distribution is not
necessary. Hastings (1970) later on generalized the above
algorithm using the following acceptance probability for
general Q(2'|x)

(L PEQ)
alwle) = (1’ P(m)@(x'm)

» Similarly, we can show that detailed balanced condition is
preserved
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Proposal Distribution 9/38

» Under mild assumptions on the proposal distribution @,
the algorithm is ergodic
» However, the choice of () is important since it determines
the speed of convergence to m and the efficiency of sampling
» Usually, the proposal distribution depend on the current
state. But it can be independent of current state, which
leads to an independent MCMC sampler that is somewhat
like a rejection/importance sampling method
» Some examples of commonly used proposal distributions
> Q(a'|z) ~ N(z,0?)
» Q(z'|z) ~ Uniform(z — é,x + J)

» Finding a good proposal distribution is hard in general
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Examples: Gaussian Model with Known Variance 10/38

» Recall the univariate Gaussian model with known variance

'NN(Q 02)

yi — 0)*
p(416,0) = H Ao ()

» Note that there is a conjugate N (uo, Tg) prior for ¢, and
the posterior has a close form normal distribution

> Now let’s pretend that we don’t know this exact posterior
distribution and use a Markov chain to sample from it.
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Examples: Gaussian Model with Known Variance 11/38

» We can of course write the posterior distribution up to a
constant

plo) xexp (L5200 [T (- 220) = P

» We use V(A 1), a normal distribution around our current
state, to propose the next step

» Starting from an initial point (%) and propose the next
step 6 ~ N(0(), 1), we either accept this value with
probability a(6'[6) or reject and stay where we are

> We continue these steps for many iterations
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Examples: Gaussian Model with Known Variance 12/38

» As we can see, the posterior distribution we obtained using
the Metropolis algorithm is very similar to the exact
posterior
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Examples: Binomial Model with Beta Prior 13/38

» Recall the binomial model:
n _
plaln.0) = (7)o - oy

» Assuming the conjugate prior Beta(a, 3) for 6, we saw that
the posterior is Beta(a +y, 5+ n — y).

» For the election example, we mentioned that out of 100
people surveyed, 39 said they are going to vote for A. We
used a conjugate Beta(1, 1) prior and obtained Beta(40,62)
as the posterior distribution for 6.

» Now let’s not use the closed form of the posterior
distribution and use the Metropolis algorithm instead.
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Examples: Binomial model with Beta prior 14/38

» We first need to find the posterior distribution (up to a
constant).

» The prior distribution is of course uniform: p(f) = 1.

» The likelihood is (ignore the irrelevant constant)
p(ylf) oc 09 (1 — )"

where n = 100 and y = 39.

» Therefore, using the Bayes’ theorem, the posterior is

p(Bly) o p(0)p(ylf) < 6*(1 — 6)°" = P(0)
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Examples: Binomial Model with Beta Prior 15/38

» Next, we need to choose a transition (i.e., proposal)
distribution.

» Let’s use Uniform(0, 1). This is of course symmetric.

» Now we start from xo = 0.5 and repeat the following steps

» sample 6’ from Uniform(0, 1)
» calculate the acceptance probability

o - (9/)39(1 _ 9/)61
a(f |9( )) = min (17 (00)39(1 — G(i))61>

» Accept the proposed value with probability a(6’|6). For
this, we can sample u ~ Uniform(0, 1) and set

pli+1) — 0 u<a(f]0)
0 otherwise

ez x Y

@

PEKING UNIVERSITY




Examples: Binomial Model with Beta Prior

Trace plot and posterior estimation
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Examples: Poisson Model with Gamma Prior 17/38

» Recall the Beckham’s example. We modeled the number of
goals y; he scores in a game using a Poisson model

y; ~ Poisson(6)

» He scored 0 and 1 goals in the first two games respectively

» We used Gamma(1.4,10) prior for 6, and because of
conjugacy, the posterior distribution also had a Gamma
distribution

0ly ~ Gamma(2.4,12)

» Again, let’s ignore the closed form posterior and use
MCMC for sampling the posterior distribution
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Examples: Poisson Model with Gamma Prior 18/38

» The prior is
p(6) o< 0% exp(—106)

» The likelihood is
p(yl0) oc 6172 exp(—20)

where y; =0 and y3 =1

» Therefore, the posterior is proportional to

p(Bly) ox 694 exp(—106) - 9% exp(~26) = P(9)
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Examples: Poisson Model with Gamma Prior 19/38

» Symmetric proposal distributions such as
Uniform(9 — 5,09 + 6) or N'(01, 02)

might not be efficient since they do not take the
non-negative support of the posterior into account.

» Here, we use a non-symmetric proposal distribution such as
Uniform(0, 0% + §) and use the Metropolis-Hastings (MH)
algorithm instead

> Weset d =1
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Examples: Poisson Model with Gamma Prior 20/38

We start from 6y = 1 and follow these steps in each iteration
» Sample ¢ from U(0,0% + 1)
» Calculate the acceptance probability

' ") Uni ®10. ¢’
a(¢')0") = min (17 P(0)Uniform(09[0,0" + 1) )

P(0@)Uniform (6|0, 0@ + 1)
» Sample u ~ U(0,1) and set

pli+1) — 0 u<a(@0")
1 0% otherwise
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Examples: Poisson Model with Gamma Prior 21/38
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Multivartiate Distributions 22/38

>

>

What if the distribution is multidimensional, i.e.,

x = (z1,22,...,2q)

We can still use the Metropolis algorithm (or MH), with a
multivariate proposal distribution, i.e., we now propose

o = (xf,2h,..., 7))

For example, we can use a multivariate normal Ny(z, o21),
or a d-dimensional uniform distribution around the current
state
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Examples: Banana Shape Distribution 23/38

>

Here we construct a banana-shaped posterior distribution
as follows

ylo ~ N (61 + 9%,03), oy =2
We generate data y; ~ N'(1,07)

We use a bivariate normal prior for 6
0 = (01,02) ~N(0,1)

The posterior is

6 +0%> o (El 0 6%)2)

p(fly) oc exp <— 5 207

We use the Metropolis algorithm to sample from posterior,
with a bivariate normal proposal distribution such as

N9, (0.15)21) Gy e X ¥
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Examples: Banana Shape Distribution 24/38

The first few samples from the posterior distribution of
0 = (01, 62), using a bivariate normal proposal
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Examples: Banana Shape Distribution 25/38

Posterior samples for 6 = (61, 62)
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Examples: Banana Shape Distribution 26/38

Trace plot of posterior samples for 6 = (61, 62)
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Decomposing the Parameter Space 27/38

> Sometimes, it is easier to decompose the parameter space
into several components, and use the Metropolis (or MH)
algorithm for one component at a time

» At iteration 4, given the current state (l'gi), . ,x((;)), we do
the following for all components k =1,2,...,d

» Sample ) from the univariate proposal distribution

1 i
Q. el e ) |
» Accept this new value and set z,(;H) = . with probability

' j P...,x(iﬂ),x’,...
“(W"'a:vﬁ_*f),x}j),...)) = min [ 1, ( k=1 2Tk )
P 0

yVk—1 2k

or reject it and set J;SH) = xg)
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Decomposing the Parameter Space 28/38

» Note that in general, we can decompose the space of
random variable into blocks of components

» Also, we can update the components sequentially or
randomly

» As long as each transition probability individually leaves
the target distribution invariant, their sequence would leave
the target distribution invariant

» In Bayesian models, this is especially useful if it is easier
and computationally less intensive to evaluate the posterior
distribution when one subset of parameters change at a
time
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Example: Banana

Shape Distribution 29/38

» In the example of banana-shaped distribution, we can
sample 61 and 05 one at a time

» The first few samples from the posterior distribution of
0 = (01, 02), using a univariate normal proposal sequentially
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The Gibbs Sampler 30/38

> As the dimensionality of the parameter space increases, it
becomes difficult to find an appropriate proposal
distributions (e.g., with appropriate step size) for the
Metropolis (or MH) algorithm

» If we are lucky (in some situations we are!), the conditional
distribution of one component, x;, given all other
components, x_; is tractable and has a close form so that
we can sample from it directly

» If that’s the case, we can sample from each component one
at a time using their corresponding conditional
distributions P(xj|x_;)
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The Gibbs Sampler 31/38

» This is known as the Gibbs sampler (GS) or “heat bath”
(Geman and Geman, 1984)

> Note that in Bayesian analysis, we are mainly interested in
sampling from p(6|y)

» Therefore, we use the Gibbs sampler when P(6;|y, 6_;) has
a closed form, e.g., there is a conditional conjugacy

» Omne example is the univariate normal model. As we will
see later, given o, the posterior P(uly,o?) has a closed
form, and given u, the posterior distribution of P(o2|u,y)
also has a closed form
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The Gibbs Sampler 32/38

» The Gibbs sampler works as follows

» Initialize starting value for x1,x2,..., 24
» At each iteration, pick an ordering of the d variables (can
be sequential or random)

1. Sample © ~ P(x;|®1,...,%i—1,Tit1,-..,Tq), €., the
conditional distribution of x; given the current values of all
other variables

2. Update x; =

» When we update x;, we immediately use it new value for
sampling other variables z;
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GS is A Special Case of MH 33/38

» Note that in GS, we are not proposing anymore, we are
directly sampling, which can be viewed as a proposal that
will always be accepted

» This way, the Gibbs sampler can be viewed as a special
case of MH, whose proposal is

Q(}, w_i|wy, x_;) = P(xf|x_;)

» Applying MH with this proposal, we obtain

a(x, x—i|vs, ;) = min (17
. Pz, x_;)P(xi|z—;) ) Pz}, x_;)P(xi,x_;)
= 1 2 — 1 2
mm( " Plri,a_)P@lo—)) 0\ Plas, o) P2, 7_;)
=1
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Examples: Univariate Normal Model 34/38

» We can now use the Gibbs sampler to simulate samples
from the posterior distribution of the parameters of a
univariate normal y ~ A (i, 02) model, with prior

MNN(H07T()2)7 o NInV'XQ(V07O-(2))
» Given (0())? at the i*? iteration, we sample p(*+1) from

Ho ny
'u(i—&—l) ~ N <Tg + (c@)2 1 >

1, _n 1, _n
RO IO

» Given pt1), we sample a new ¢ from

2 n
(132 Ty Yoy +vn _ 1 (D)2
(o ) nv-x~(vo+n, 7o+ 1 ), vV - ngl(y] 1z )
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Examples: Univariate Normal Model 35/38

» The following graphs show the trace plots of the posterior
samples (for both p and o)
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Application in Probabilistic Graphical Models 36/38

Gibbs sampling algorithms have been widely used in
probabilistic graphical models

» Conditional distributions are fairly easy to derive for many
graphical models (e.g., mixture models, Latent Dirichlet
allocation)

» Have reasonable computation and memory requirements,
only needs to sample one random variable at a time

» Can be Rao-Blackwellized (integrate out some random
variable) to decrease the sampling variance. This is called
collapsed Gibbs sampling

> We will see examples later.
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Combining Metropolis with Gibbs 37/38

» For more complex models, we might only have conditional
conjugacy for one part of the parameters

» In such situations, we can combine the Gibbs sampler with
the Metropolis method

» That is, we update the components with conditional
conjugacy using Gibbs sampler and for the rest parameters,
we use the Metropolis (or MH)
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