Bayesian Theory and Computation

Lecture 3: Monte Carlo Methods

Cheng Zhang

School of Mathematical Sciences, Peking University

March 04, 2022



Background 2/38

» We saw previously that in certain situations, the posterior
distribution has a closed form (e.g., when the prior is
conjugate), and the integrals are tractable.

» For many other problems, however, finding the posterior
distribution and obtaining the expectation are far from
trivial.

» Remember that even for the case of simple normal
distribution with two parameters, the posterior didn’t have
a closed form unless we were willing to use noninformative
priors or tie the variance of the mean to the variance of the
data.

» In the following few lectures, we focus on problems where
the posterior distribution is not analytically tractable.

» For this, we need to learn about Monte Carlo methods and

Markov chain stochastic processes. @ N i XS
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Monte Carlo Method 3/38

» Suppose we are interested in estimating I(h) = ff h(z)dx

n)

» If we can draw iid samples, (M, 22 ... 2l uniformly

from (a,b), we can approximate the integral as
1o ,
I = (b—a)~ Z; h(z)

> Note that we can think about the integral as
b 1
b— h(x) - d
p=a) [ W) s
1

where ;= is the density of Uniform(a, b)
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Monte Carlo Method 4/38

> In general we are interested in integrals of the form
Sy h x)dx, where f(x) is a probability density function

> Analogous to the above argument, we can approximate this
integral (or expectation) by drawing iid samples
M, 2@ 2™ from the density f(x) and then

1 n
I== n®
» Based on the law of large numbers, we know that
lim I, & 1
n—oo

» And based on the central limit theorem

Vvn(l, —I) = N(0,6%), o*= Var(h(X))
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Example: estimating 5/38

» Let h(:l,‘) = 13(0’1)(51,‘), then m = 4]‘[_1’1]2 h(l‘) . % dx
» Monte Carlo estimate of m

. 4 < ;
i=1

2@ ~ Uniform([—1, 1]2)
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Example: estimating 6/38

Monte Carlo estimate of 7 (with 90% confidence interval)
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Monte Carlo vs Quadrature 7/38

» Convergence rate for Monte Carlo: O(n~1/2)

7
vné

often slower than quadrature methods (O(n~2) or better)

p(rfn—ﬂs )21—6, v

» However, the convergence rate of Monte Carlo does not
depend on dimensionality

» On the other hand, quadrature methods are difficult to
extend to multidimensional problems, because of the curse
of dimensionality. The actual convergence rate becomes
O(n~*/4), for any order k method in dimension d

» This makes Monte Carlo strategy very attractive for high
dimensional problems
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Exact Simulation 8/38

» Monte Carlo methods require sampling a set of points
chosen randomly from a probability distribution

» For simple distribution f(z) whose inverse cumulative
distribution functions (CDF) exists, we can sampling x
from f as follows

= FY(u), wu~ Uniform(0,1)

where F~! is the inverse CDF of f
» Proof.

pla < <b) =p(F(a) <u < F(b)) = F(b) - Fa)

ez x Y
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Examples 9/38

» Exponential distribution: f(z) = 6 exp(—60x). The CDF is
F(a) = / 0 exp(—0z) =1 — exp(—ba)
0

therefore, z = F~'(u) = —$log(1 — u) ~ f(z). Since 1 —u
also follows the uniform distribution, we often use

z = —% log(u) instead
2
» Normal distribution: f(z) = \/% exp(f?). Box-Muller
Transform
X =+/—2logUj cos2wU,
Y =+/—2logU; sin 27U,

where Uy ~ Uniform(0,1), Us ~ Uniform(0,1)

ANEIE T
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Intuition for Box-Muller Transform 10/38

» Assume Z = (X,Y) follows the standard bivariate normal
distribution. Consider the following transform

X =Rcos®, Y =Rsin®
» From symmetry, clearly © follows the uniform distribution

on the interval (0,27) and is independent of R

» What distribution does R follow? Let’s take a look at its
CDF

p(R<r)=p(X*+Y?<r?)
1 r 2

¢ (t)dt/%dﬁ 1 — exp(—")
—_ —— _—— e J— X —_—
o J, (TP Py

Therefore, using the inverse CDF rule, R = /—2logU;

@ ez x Y
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Rejection Sampling 11/38

» If it is difficult or computationally intensive to sample
directly from f(z) (as described above), we need to use
other strategies

» Although it is difficult to sample from f(x), suppose that
we can evaluate the density at any given point up to a
constant f(z) = f*(x)/Z, where Z could be unknown
(remember that this make Bayesian inference convenient
since we usually know the posterior distribution only up to
a constant)

» Furthermore, assume that we can easily sample from
another distribution with the density g(z) = ¢*(x)/Q,
where @ is also a constant

ez x Y
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Rejection Sampling 12/38

» Now we choose the constants ¢ such that cg*(z) becomes
the envelope (blanket) function for f*(z):

cg"(z) = f*(x), Va

» Then, we can use a strategy known as rejection sampling in
order to sample from f(z) indirectly

» The rejection sampling method works as follows

1.
2.

3.

draw a sample = from g(x)
generate u ~ Uniform(0, 1)

ifu< f **(a:) we accept x as the new sample, otherwise,
cg*(z)
reject x (discard it)

return to step 1

ez x Y
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Rejection Sampling 13/38

Rejection sampling generates samples from the target density,
no approximation involved

p(XT <y) =p(X9 <y|U <

=p(X9 <y, U<

f*(2)
B fi/oo focg ) dug(z)dz
- f*(z)
J250 o7 dug(2)dz

= /?; f(2)dz
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Example 14/38

» Assume that it is difficult to sample from the Beta(3, 10)
distribution (this is not the case of course)

» We use the Uniform(0, 1) distribution with
g(x) =1, Vx € [0, 1], which has the envelop proporty:
4g(x) > f(x), Vo € [0,1]. The following graph shows the
result after 3000 iterations
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Advanced Rejection Sampling 15/38

Rejection sampling becomes challenging as the dimension of x
increases. A good rejection sampling algorithm must have three
properties

» It should be easy to construct envelops that exceed the
target everywhere

» The envelop distributions should be easy to sample

» It should have a low rejection rate

ez x Y
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Squeezed Rejection Sampling 16/38

» When evaluating f* is computationally expensive, we can
improve the simulation speed of rejection sampling via
squeezed rejection sampling

> Squeezed rejection sampling reduces the evaluation of f via
a nonnegative squeezing function s that does not exceed f*
anywhere on the support of f: s(z) < f*(x),Vx

» The algorithm proceeds as follows:

1.
2.

3.

draw a sample = from g(x)
generate u ~ Uniform(0, 1)

if u < c;ﬁfi), we accept x as the new sample, return to step

otherwise, determine whether u < (f; **((Z)). If this inequality
holds, we accept x as the new sample, otherwise, we reject
it.

return to step 1

e 7 X Z
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Squeezed Rejection Sampling 17/38

Keep First  KeepLater

Y

Remark: The proportion of iterations in which evaluation of f
is avoided is [ s(z)dz/ [e(z




Adaptive Rejection Sampling 18/38

» For a continuous, differentiable, log-concave density on a
connected region of support, we can adapt the envelope
construction (Gilks and Wild, 1992)

» Let T'={x1,...,z} be the set of k starting points.

» We first sample z* from the piecewise linear upper envelop
e(x), formed by the tangents to the log-likelihood ¢ at each

ez x Y

point in Tj.
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Adaptive Rejection Sampling 18/38

» To sample from the upper envelop, we need to transform
from log space by exponentiating and using properties of
the exponential distribution

> We then either accept or reject z* as in squeeze rejection
sampling, with s(x) being the piecewise linear lower bound
formed from the chords between adjacent points in T’

» Add z* to T whenever the squeezing test fails.
ez X F
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Markov Chain Monte Carlo 19/38

» For more complex distributions, we can use a Markov chain
process to generate samples (which would not be
independent anymore) and approximate the target
distribution.

» This method is known as Markov chain Monte Carlo
(MCMC) technique.

» However, we first need to discuss Markov chains and
stochastic processes in general.

ez x Y
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Stochastic Processes & Random Walks 20/38

» Stochastic processes is a family of random variables,
usually indexed by a set of numbers (time). A discrete time
stochastic process is simply a sequence of random variables,
Xo,X1,...,X, defined on the same probability space

» One of the simplest stochastic processes (and one of the
most useful) is the simple random walk

» Consider a simple random walk on a graph G = (Q, E).
The stochastic process starts from an initial position
Xo =z € (2, and proceeds following a simple rule:

p(Xnt1| Xy = x,) ~ Discrete(N (z,,)), Vn >0

where N (x,,) denotes the neighborhood of z,

ez x Y
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Random Walk: One Dimension
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» Consider a sequence of iid random variables {Z;} such that
p(Z;=1)=p, p(Z;=—1) =1—p. A one dimension
random work process can be defined as
Xo=a, Xp,=a+ 21+ + Z,.

» The distribution of X,

n —
p(Xn=a+k)= < )p(”‘i‘k)/?(l _ p)(n k)/2

(n—l—k:)/? 9‘:%*?
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Random Walk: Two Dimension 22/38

Two random walks on a 20 x 20 grid graph
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Discrete Time, Discrete Space Markov Chains 23/38

» The above simple random walk is a special case of another
well-known stochastic process called Markov chains

» A Markov chain represents the stochastic movement of
some particle in the state space over time. The particle
initially starts from state ¢ with probability 711-(0), and after
that moves from the current state ¢ at time ¢ to the next
state j with probability p;;(t)

» A Markov chain has three main elements:

1. A state space S

2. An initial distribution 7(®) over S

3. Transition probabilities p;;(t) which are non-negative
numbers representing the probability of going from state i
to j, and >, pi;(t) = 1.

» When p;;(t) does not depend on time ¢, we say the Markov

ez x Y

chain is time-homegenous ‘
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Markov Property 24/38

» Chain rule (in probability)
p(Xn = Tny-.- ,X[) = I‘o) = Hp(Xz = $1’X<z = $<i)

» Markov property
P(Xip1 = i1 | Xi = 24, ..., Xo = x0) = p(Xip1 = 21| Xs = 7))

» Joint probability with Markov property

n

P(Xn = n, ..., Xo = x0) = [ [ p(Xi = 2l Xi1 = i 1)
i=1

fully determined by the transition probabilities
At 7 X
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Example

25/38

» Consider the 2000 US presidential election with three
candidates: Gore, Bush and Nader (just an illustrative
example and does not reflect the reality of that election)

» We assume that the initial distribution of votes (i.e.,
probability of winning) was = = (0.49,0.45,0.06) for Gore,
Bush and Nader respectively

» Further, we assume the following transition probability

matrix
Gore
Gore 0.94
Bush  0.05
Nader 0.05

Bush  Nader
0.05 0.01
0.95 0
0.01 0.94

ez x Y
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Example 26/38

A probabilistic graph presentation of the Markov chain
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Stationary Distribution 27/38

» If we represent the transition probability a square matrix P
such that P;; = p;;, we can obtain the distribution of states
in step n, 7™, as follows

7 — p=Dp _ 70 pn

» For the above example, we have

70 —
710) —

0.4900, 0.4500, 0.0600)
0.4656, 0.4655, 0.0689)
0.4545,0.4697,0.0758)
0.4545,0.4697,0.0758)

(100) _

o~ o~ o~ o~

(200) _
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Stationary Distribution 28/38

» As we can see last, after several iterations, the above
Markov chain converges to a distribution,
(0.4545,0.4697,0.0758)

» In this example, the chain would have reached this
distribution regardless of what initial distribution 7(
chose. Therefore, m = (0.4545,0.4697,0.0758) is the
stationary distribution for the above Markov chain

9 we

» Stationary distribution. A distribution of Markov chain
states is called to be stationary if it remains the same in
the next time step, i.e.,

T=mP

ez x Y
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Stationary Distribution 29/38

v

How can we find out whether such distribution exists?
Even if such distribution exists, is it unique or not?

Also, how do we know whether the chain would converge to
this distribution?

To find out the answer, we briefly discuss some properties
of Markov chains

ez x Y
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Irreducibility 30/38

» Irreducible: A Markov chain is irreducible if the chain can
move from any state to another state.
» Examples

» The simple random walk is irreducible
» The following chain, however, is reducible since Nader does
not communicate with the other two states (Gore and Bush)

Gore Bush Nader
Gore 0.95 0.05 0
Bush  0.05 0.95 0
Nader 0 0 1

ez x Y
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Aperiodicity 31/38

» Period: the period of a state i is the greatest common
divisor of the times at which it is possible to move from i
to 1.

» For example, all the states in the following Markov chain
have period 3.

_ o O

10
0 1
0 0

» Aperiodic: a Markov chain is said to be aperiodic if the
period of each state is 1, otherwise the chain is periodic.

ez x Y
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Recurrent vs. Transient

32/38

» Recurrent states: a state i is called recurrent if with
probability 1, the chain would ever return to state ¢ given

that it started in state 7.

Gore

Gore 0.94
Bush  0.05
Nader 0.05

Bush
0.05
0.95
0.01

Nader
0.01
0
0.94

» Positive recurrent: a recurrent state j is called positive
recurrent if the expected amount of time to return to state
7 given that the chain started in state j is finite

» For a positive recurrent Markov chain, the stationary
distribution exists and is unique

@
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Reversibility 33/38

» Reversibility: a Markov chain is said to be reversible
with respect to a probability distribution 7 if m;p;; = 7;pj;

» In fact, if a Markov chain is reversible with respect to ,
then 7 is also a stationary distribution

Z"szw = Z"ij]z
= Ty ijz

since ), pj; = 1 for all transition probability matrices

» This is also known as detailed balance condition.
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Discrete Time, General Space Markov Chains 34/38

» We can define a Markov chain on a general state space X
with initial distribution 7(®) and transition probabilities
p(z, A) defined as the probability of jumping to the subset
A from point z € X

» Similarly, with Markov property, we have the joint
probability

p(XOEAOw-';XneAn):/

ﬂ(o)(dazo) .. / p(xp—1,dxy)
Ao n

» Example. Consider a Markov chain with the real line as its
state space. The initial distribution is A/ (0,1), and the
transition probability is p(z,-) = N (x,1). This is just a
Brownian motion (observed at discrete time)

ez x Y
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¢-irreducibility and ¢-aperiodicity 35/38

» Unlike the discrete space, we now need to talk about the
property of Markov chains with a continuous non-zero
measure ¢, on X, and use sets A instead of points

» A chain is ¢-irreducible if for all A C X with ¢(A) > 0 and
for all x € X, there exists a positive integer n such that

pt(x,A) =p(X, € Al Xg=2) >0

» Similarly, we need to modify our definition of period

ez x Y
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Stationary Distribution 36/38

> A distribution 7 is a stationary distribution if
m(A) :/ m(dx)p(x,A), VACX
X

» As for the discrete case, a continuous space Markov chain
is reversible with respect to 7 if

m(dz)p(z, dy) = 7(dy)p(y, dz)

» Similarly, if the chain is reversible with respect to 7, then 7
is a stationary distribution

» Example. Consider a Markov chain on the real line with
initial distribution N(1,1) and transition probability
p(z,-) = N(5, 4) It is easy to show that the chain
converges to NV (0,1) (Exercise)
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Ergodicity 37/38

>

>

Ergodic: a Markov chain is ergodic if it is both irreducible
and aperiodic, with stationary distribution m

Ergodic Theorem. For an ergodic Markov chain on the
state space X having stationary distribution m, we have: (i)
for all measurable A C X and 7-a.e. z € X,

. t _
Jim p*(z, A) = w(A)

(i) Vf with E.|f(z)| < oo,

In particular, 7 is the unique stationary probability density

ez x Y

function for the chain
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