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I A generative approach to clustering
I pick one of K clusters from a distribution π = (π1, . . . , πK)
I generate a data point from a cluster-specific probability

distribution

I This yields a finite mixture model:

p(x|φ, π) =

K∑
k=1

πkp(x|φk)

where π and φ = (φ1, . . . , φK) are the parameters, and here
we assume the sae parameterized family for each cluster for
simplicity.

I Data {xi}Ni=1 are assumed to be generated conditionally iid
from this mixture model.



Example: Gaussian Mixtures 6/45

I For Gaussian mixtures, φk = (µk,ΣK) and p(x|φk) is a
Gaussian density with mean µk and covariance matrix Σk



Finite Mixture Models 7/45

I Mixture models make the assumption that each data point
arises from a single mixture component, i.e., the kth cluster
is by definition the set of data points arising from the kth
mixture component.

I Can capture this explicitly via a latent multinomial
variable Z:

p(x|φ, π) =

K∑
k=1

p(Z = k|π)p(x|Z = k, φ)

=

K∑
k=1

πkp(x|φk)
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I Another way to express this: define an underlying measure

G =

K∑
k=1

πkδφk

where δφk is an atom (Dirac delta function) at φk.

I Now we can redefine the process of obtaining a sampling
from a finite mixture model as follows. For i = 1, . . . , n:

θi ∼ G
xi ∼ p(·|θi)

I Note that each θi is equal to one of the underlying φk.
Indeed, the subset of {θi} that maps to φk is exactly the
kth cluster
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Adapted from M. I. Jordan
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I Bayesian approaches allow us to integrate out model
parameters

I Need to place priors on the parameters φ and π

I The choice of prior for φ is model-specific; e.g., we may use
conjugate normal/inverse-gamma priors for a Gaussian
mixture model. Let us denote this prior as G0.

I What to choose for the mixture weights π? A common
choice is a symmetric Dirichlet prior, Dir(α0/K, . . . , α0/K)
I the symmetry accords with the common assumption of the

order-free of the labels of the mixture components
I the concentration parameter α0 controls concentration level

of the labels
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I Note that G is now a random measure



Inference Methods 12/45

I Posterior distributions can’t be found analytically; nor can
predictive distributions (for future observations)

I However, a variety of MCMC sampling algorithms are
available

I Use the indicators Z within a Gibbs sampler. Give Z, we
know which data points belong to which cluster, so:
I p(π|Z, φ): standard multinomial-Dirichlet conjugacy
I p(φ|Z, π): separate updates for each cluster; i.e., for each φk

(and conjugacy of G0 and p(·|φ) can make this easy)
I p(Z|π, φ): multinomial classification

I We can also use variational inference.



Model Choice for Finite Mixture Models 13/45

I How to choose K, the number of mixture components?

I Various generic model selection methods can be considered:
e.g., cross-validation, bootstrap, AIC, BIC, DIC, Laplace,
bridge sampling, etc

I Or we can place a parametric prior on K (e.g., Poisson)
and use Bayesian methods

I The Dirichlet process provides a nonparametric Bayesian
alternative.



Bayesian Nonparametric Mixture Models 14/45

I Make sure we always have more clusters than we need.

I How about infinite clusters a priori?

p(x|φ, π) =

∞∑
k=1

πkp(x|φk)

I A finite data set will always use a finite, but random,
number of clusters.

I How to choose the prior?

I We need something like a Dirichlet prior, but with an
infinte number of components.
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I Relation to gamma distribution: If ηk ∼ Gamma(αk, β)
independently, then

S =
∑
k

ηk ∼ Gamma

(∑
k

αk, β

)

and

V = (v1, . . . , vk) = (η1/S, . . . , ηk/S) ∼ Dir(α1, . . . , αK)

I Therefore, if (π1, . . . , πK) ∼ Dir(α1, . . . , αK) then

(π1 + π2, π3, . . . , πK) ∼ Dir(α1 + α2, α3, . . . , αK)

This is known as the collapsing property.
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I The beta distribution is a Dirichlet distribution on the
1-simplex

I Let (π1, . . . , πK) ∼ Dir(α1, . . . , αK) and
θ ∼ Beta(α1b, α1(1− b)), 0 < b < 1.

I Then

(π1θ, π1(1−θ), π2, . . . , πK) ∼ Dir(α1b1, α1(1−b1), α2, . . . , αK)

I More generally, if θ ∼ Dir(α1b1, α1b2, . . . , α1bN ),
∑

i bi = 1,
then

(π1θ1, . . . , π1θN , π2, . . . , πK) ∼ Dir(α1b1, . . . , α1bN , α2, . . . , αK)

This is known as the splitting property.
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I Renormalization. If (π1, . . . , πK) ∼ Dir(α1, . . . , αK), and

V = (V2, V3, . . . , VK), Vk =
πk∑
k≥2 πk

I What is the distribution of V?

V ∼ Dir(α2, . . . , αK)

I All these properties can be easily verified using the
aforementioned gamma distribution representation.



The Dirichlet Process 18/45

I Let G0 be a distribution on some space Ω, e.g. a Gaussian
distribution on the real line.

I Assume that π, φ have the following distributions

φk ∼ G0

π ∼ lim
K→∞

Dir
(α0

K
, . . . ,

α0

K

)
I Then G :=

∑∞
k=1 πkδφk defines an infinite distribution over

G0.

I We say (informally) that G follows a Dirichlet Process

G ∼ DP(α0G0)



Samples From The Dirichlet Process 19/45

I Samples from the Dirichlet process are discrete.

I We call the point masses in the resulting distribution,
atoms.

I The base measure G0 determines the locations of the atoms.



Samples From The Dirichlet Process 20/45

I The concentration parameter α0 determines the
distribution over atom sizes.

I Small values of α0 gives sparse distributions.



Dirichlet Process: A Formal Definition 21/45

I Let (Ω,B) be a measurable space, with G0 a probability
measure on the space, and let α0 be a positive real number.

I A Dirichlet process is the distribution of a random
probability measure G over (Ω,B) such that, for any finite
partition (A1, . . . , Ar) of Ω, the random vector
(G(A1), . . . , G(Ar)) follows a finite-dimensional Dirichlet
distribution:

(G(A1), . . . , G(Ar)) ∼ Dir(α0G0(A1), . . . , α0G(Ar))

I We write G ∼ DP(α0G0), and call G0 the base measure, α0

the concentration parameter.



Conjugacy of The Dirichlet Process 22/45

I Let A1, . . . , AK be a partition of Ω. Let G(Ak) be the mass
assigned by G ∼ DP(α0G0) to partition Ak. Then

(G(A1), . . . , G(AK)) ∼ Dir(α0G0(A1), . . . , α0G0(AK))

I If we see an observation in the j-th segment, then

(G(A1), . . . , G(AK)|θ1 ∈ Aj)
∼ Dir(α0G0(A1), . . . ,α0G(Aj) + 1, . . . , α0G0(AK)).

I This is true for all possible partitions of Ω.

I Therefore, the posterior distribution of G, given an
observation φ, is given by

G|θ1 = φ ∼ DP(α0G0 + δφ)



Predictive Distribution 23/45

I The Dirichlet process clusters observations.

I A new data point can either join an existing cluster, or
start a new cluster.

I Question: What is the predictive distribution for a new
data point?

I Assume G0 is a continuous distribution on Ω. This means
for every point φ in Ω, G0(φ) = 0.

I First data point:
I Start a new cluster
I Sample a parameter φ1 ∼ G0 for that cluster.



Predictive Distribution 24/45

I We have now split our parameter space in two: the
singleton φ1, and everything else.

I Let π1 be the size of atom at φ1.

I The combined mass of all the other atoms is π∗ = 1− π1.
I According to the DP,

(π1, π∗) ∼ Dir(0, α0)

I Given θ1 = φ1, the posterior is

(π1, π∗)|θ1 = φ1 ∼ Dir(1, α0)



Predictive Distribution 25/45

I If we integrate out π1, we get

p(θ2 = φk|θ1 = φ1) =

∫
p(θ2 = φk|(π1, π∗))p((π1, π∗)|θ1 = φ1)dπ1

=

∫
πkDir((π1, 1− π1)|1, α0)dπ1

= EDir(1,α0)πk

=

{ 1
1+α0

if k = 1
α0

1+α0
for new k.
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I Lets say we choose to start a new cluster, and sample a new
parameter φ2 ∼ G0. Let π2 be the size of the atom at φ2.

I Similarly, the posterior is

(π1, π2, π∗)|θ1 = φ1, θ2 = φ2 ∼ Dir(1, 1, α0)

I If we integrate out π = (π1, π2, π∗), we get

p(θ3 = φk|θ1 = φ1, θ2 = φ2)

=

∫
p(θ3 = φk|π)p(π|θ1 = φ1, θ2 = φ2)dπ

= EDir(1,1,α0)πk

=


1

2+α0
if k = 1

1
2+α0

if k = 2
α0

2+α0
for new k.
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I In general, if mk is the number of times we have seen
Xi = k, and K is the total number of observed values,

p(θn+1 = φk|θ1, . . . , θn) =

∫
p(θn+1 = φk|π)p(π|θ1, . . . , θn)dπ

= EDir(m1,...,mK ,α0)πk

=

{ mk
n+α0

if k ≤ K
α0

n+α0
for new cluster.

I We tend to see observations that we have seen before, i.e.,
rich-get-richer property

I We can always add new features, a typical nonparametric
behavior.



Pólya Urn Process 28/45

Adapted from Eric Xing

I Joint: G( ) ∼ DP(α0G0)

I Marginal: θn+1|θ≤n, α0, G0 ∼
∑K

k=1
mk
n+α0

δφk + α0
n+α0

G0.



Polya Urn Scheme 29/45

I The resulting distribution over data points can be thought
of using the following urn scheme (Blackwell and
MacQueen, 1973).

I An urn initially contains a black ball of mass α0.

I For n = 1, 2, . . ., sample a ball from the urn with
probability proportional to its mass.

I If the ball is black, choose a previously unseen color, record
that color, and return the black ball plus a unit-mass ball
of the new color to the urn.

I If the ball is not black, record it’s color and return it, plus
another unit-mass ball of the same color, to the urn.



Chinese Restaurant Process 30/45

I The distribution over partitions can also be described in
terms of the following restaurant metaphor:

I The first customer enters a restaurant, and picks a table.

I The n-th customer enters the restaurant. He sits at an
existing table with probability mk

n−1+α0
, where mk is the

number of people sat the table k. He starts a new table
with probability α0

n−1+α0
.
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I An interesting fact: the distribution over the clustering of
the first N customers does not depend on the order in
which they arrived.

I However, the customers are not independent. They tend to
sit at popular tables.

I We say that distributions like this are exchangeable.

p(θ1, . . . , θN ) = p(θσ(1), . . . , θσ(n))

I By de Finetti’s theorem, there exists a random
distribution G and a prior P (G) such that

p(θ1, . . . , θN ) =

∫ N∏
i=1

G(θi)dP (G)

I In our setting, the prior p(G) is just DP(α0G0), thus
establishing existence.



A Second Perspective: Stick Breaking 32/45

I Define an infinite sequence of Beta random variables:

βk ∼ Beta(1, α0), k = 1, 2, . . .

I Now define an infinite sequence of mixing proportions as:

π1 = β1

πk = βk

k−1∏
`=1

(1− β`), k = 2, 3, . . .

I This can be viewed as breaking off portions of a stick:



Stick Breaking Construction 33/45

I We now have an explicit formula for each πk:

πk = βk
∏k−1

`=1
(1− β`)

I We can easily see that
∑∞

k=1 πk = 1:

1−
∞∑
k=1

πk = 1− β1 − β2(1− β1)− β3(1− β1)(1− β2)− · · ·

= (1− β1)(1− β2 − β3(1− β2)− · · · )

=

∞∏
k=1

(1− βk) = 0

I Let φk ∼ G0,∀k, G =
∑∞

k=1 πkδφk has a clean definition as
a random measure. In fact,

G ∼ DP(α0G0).



Graphical Model Representations 34/45

Polya urn construction Stick breaking construction



Dirichlet Process Mixture Model 35/45

I Now we can use a Dirichlet process as the prior for an
unknown mixture distribution (with potentially infinite
mixture components).

I Suppose we have x1, . . . , xn observations from some
unknown distribution.

I We can model the unknown distribution of x as a mixture
of simple distributions of the form f(·|θ).

I We denote the mixing distribution over θ as G and let the
prior over G be a Dirichlet process

xi|θi ∼ f(θi)

θi|G ∼ G
G ∼DP(α0G0)



Samples from DP Mixture Prior 36/45

I Multiple subjects can be mapped to the same φ. This
creates a clustering of subjects.

I The following graphs shows 4 different data sets (n = 200)
randomly generated from distributions sampled from
Dirichlet process mixture priors with α0.



Inference: Collapsed Gibbs Sampler 37/45

I We can integrate out G to get the CRP. Note that the
CRP is exchangeable, which induces the conditional priors

p(θi|θ−i, α0, G0) =
α0

n− 1 + α0
G0(θi)+

K(−i)∑
k=1

m
(−i)
k

n− 1 + α0
δ
φ
(−i)
k

I Let zi be the cluster allocation of the i-th data point. The
collapsed Gibbs sampler alternates between
I update zi

p(zi = k|xi, z−i, φ1:K) ∝
{
m

(−i)
k f(xi|φ(−i)

k ) k ≤ K(−i)

α0

∫
f(xi|θ)dG0(θ) k = K(−i) + 1

I update φk

p(φk|z1:n, x1:n) ∝ G0(φk)
∏

i:zi=k

f(xi|φk)

I If G0 is conjugate to f , the above steps can be evaluated
accurately.



Sampling The Concentration Parameter 38/45

I For the concentration parameter α0, we have

p(K|α0) ∝ αK0
Γ(α0)

Γ(α0 + n)

where K is the number of unique φ’s (e.g., the number of
clusters).

I Therefore, given K and the prior distribution P (α0) we can
sample from the posterior distribution of α0 using the MH
algorithm or the Gibbs sampling method of Escobar and
West (1995).



Problems with The Collapsed Gibbs Sampler 39/45

I We are only updating one data point at a time.

I Imagine two “true” clusters are merged into a single
cluster, a single data point is unlikely to “break away”.

I Getting to the true distribution involves going through low
probability states, i.e., mixing can be slow.

I If the likelihood is not conjugate, integrating out parameter
values for new features can be difficult.

I Neal (2000) offers a variety of algorithms.



Truncated Dirichlet Processes 40/45

I The stick-breaking representation orders the mixture
components so that the weights are stochastically
decreasing. For a sufficiently large T , we will have∑

k>T πk ≈ 0.

I Therefore, we can truncate the stick-breaking construction
at a fixed value T and let βT = 1.

I This implies πk = 0, ∀k > T , and the distribution of

GT =

T∑
k=1

πkδφk

is known as a truncated Dirichlet process.

I Variational distance between distributions of marginals
from a DP and from its truncation at T is approximately
4n exp(−(T − 1)/α0). T doesn’t have to be very large to
get a good approximation.



Blocked Gibbs Sampler 41/45

I State of the Markov chain: (β1:T−1, φ1:T , z1:n).

I Update zi by multinomial sampling with

p(zi = k|β, φ, xi) ∝ πkf(xi|φk)

I Update βk by sampling from the conditional posterior

βk ∼ Beta(1 +mk, α0 +
∑

j>k
mj)

I Update φk by sampling from the conditional posterior

p(φk|z1:n, x1:n) ∝ G0(φk)
∏
i:zi=k

f(xi|φk)

I One can monitor maxi zi to verify that truncation at T is
good enough, and increase T if necessary.



Variational Inference for DP Mixtures 42/45

I We can also use truncated steak-breaking representation to
form a mean field approximation of DP mixtures

q(β, φ, z) =

n∏
i=1

q(zi|wi)
T∏
k=1

q(φk|τk)
T−1∏
k=1

q(βk|γk)

I For a conjugate DP mixture in the exponential family

γk,1 = 1 +
∑n

i=1
wi,k, γk,2 = α0 +

∑n

i=1

∑
j>k

wi,j

τk,1 = λ1 +
∑n

i=1
wi,kt(xi), τk,2 = λ2 +

∑n

i=1
wi,k

wi,k ∝ exp(Sk)

where

Sk = E log βk +
∑

j<k
E log(1− βj) + EφTk t(xi)− EA(φk)



Example: DP Gaussian Mixture 43/45

I The approximate predictive distribution given by
variational inference at different stages of the algorithm.
The data are 100 points generated by a Gaussian DP
mixture model with fixed diagonal covariance.
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