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I Mean-field VI can be slow when the data size is large.

I Moreover, the conditional conjugacy required by mean-field
VI greatly reduces the general applicability of the method.

I Fortunately, as an optimization approach, VI allows us to
easily combine it with various scalable optimization
methods.

I In this lecture, we will introduce some of the recent
advancements on scalable variational inference, both for
mean-field VI and more general VI.
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I A generic class of models

p(β, z, x) = p(β)

n∏
i=1

p(zi, xi|β)

I The mean-field approximation

q(β, z) = q(β|λ)

n∏
i=1

q(zi|φi)

I Coordinate ascent could be data-inefficient

λ∗ = Eq(z)(ηg(x, z)), φ∗i = Eq(β)(η`(xi, β))

I Requires local computation for each data points.
I Aggregate these computation to update the global

parameter.
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I Recall that the λ-ELBO (update to a constant) is

L(λ) = ∇λAg(λ)>

(
α+

n∑
i=1

Eφi(T (zi, xi))− λ

)
+Ag(λ)

I Differentiating this w.r.t. λ yields

∇λL(λ) = ∇2
λAg(λ)

(
α+

n∑
i=1

Eφi(T (zi, xi))− λ

)

I Similarly

∇φiL(φi) = ∇2
φi
A`(φi) (Eλ(η`(xi, β))− φi)
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I The gradient of f at λ, ∇λf(λ) points in the same
direction as the solution to

arg max
dλ

f(x+ dλ), s.t. ‖dλ‖2 ≤ ε2

for sufficiently small ε.

I The gradient direction implicitly depends on the Euclidean
distance, which might not capture the distance between the
parameterized probability distribution q(β|λ).

I We can use natural gradient instead, which points in the
same direction as the solution to

arg max
dλ

f(x+ dλ), s.t. Dsym
KL (q(β|λ), q(β|λ+ dλ)) ≤ ε

for sufficiently small ε, where Dsym
KL is the symmetrized KL

divergence.
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I We manage the symmetrized KL divergence constraint
with a Riemannian metric G(λ)

Dsym
KL (q(β|λ), q(β|λ+ dλ)) ≈ dλ>G(λ)dλ

as dλ→ 0. G is the Fisher information matrix of q(β|λ)

G(λ) = Eλ
(

(∇λ log q(β|λ))(∇λ log q(β|λ))>
)

I The natural gradient (Amari, 1998)

∇̂λf(λ) , G(λ)−1∇λf(λ)

I When q(β|λ) is in the prescribed exponential family

G(λ) = ∇2
λAg(λ)
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I The natural gradient of the ELBO

∇nat
λ L =

(
α+

n∑
i=1

Eφi(T (zi, xi))

)
− λ

∇nat
φi
L = Eλ(η`(xi, β))− φi

Classical coordinate ascent can be viewed as natural
gradient descent with step size one

I Use the noisy natural gradient instead

∇̂nat
λ L(λ) = α+nEφj (T (zj , xj))−λ, j ∼ Uniform(1, . . . , n)

I This is a good noisy gradient
I The expectation is the exact gradient (unbiased).
I Depends merely on optimized local parameters (cheap).
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Classic Coordinate Ascent

φd,n,k ∝ exp
(
E(log θd,k) + E(log βk,wd,n)

)
γd = α+

N∑
n=1

φd,n, λk = η +
D∑
d=1

N∑
n=1

φd,n,kwd,n
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I Sample a document wd uniform from the data set

I Estimate the local variational parameters using the current
topics. For n = 1, . . . , N

φd,n,k ∝ exp
(
E(log θd,k) + E(log βk,wd,n)

)
, k = 1, . . . ,K

γd = α+

N∑
n=1

φd,n

I Form the intermediate topics from those local parameters
for noisy natural gradient

λ̂k = η +D

N∑
n=1

φd,n,kwd,n, k = 1, . . . ,K

I Update topics using noisy natural gradient

λ = (1− ρt)λ+ ρtλ̂
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I Mean-field VI works for conjugate-exponential models,
where the local optimal has closed-form solution.

I For more general models, we may not have this conditional
conjugacy
I Nonlinear Time Series Models
I Deep Latent Gaussian Models
I Generalized Linear Models
I Stochastic Volatility Models
I Bayesian Neural Networks
I Sigmoid Belief Network

I While we may derive a model specific bound for each of
these models (Knowles and Minka, 2011; Paisley et al.,
2012), it would be better if there is a solution that does not
entail model specific work.
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I The logistic regression model

yi ∼ Bernoulli(pi), pi =
1

1 + exp(−x>i β)
. β ∼ N (0, Id)

I The mean-field approximation

q(β) =

d∏
j=1

N (βj |µj , σ2j )

I The ELBO is

L(µ, σ2) = Eq(log p(β) + log p(y|x, β)− log q(β))



VI for Bayesian Logistic Regression 14/32

L(µ, σ2) = Eq(log p(β)− log q(β) + log p(y|x, β))

= −1

2

d∑
j=1

(µ2j + σ2j ) +
1

2

d∑
j=1

log σ2j + Eq log p(y|x, β) + Const =
1

2

d∑
j=1

(log σ2j − µ2j − σ2j ) + Eq
(
Y >Xβ − log(1 + exp(Xβ))

)

=
1

2

d∑
j=1

(log σ2j − µ2j − σ2j ) + Y >Xµ− Eq(log(1 + exp(Xβ)))

I We can not compute the expectation term

I This hides the objective dependence on the variational
parameters, making it hard to directly optimize.
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I Let p(x, θ) be the joint probability (i.e., the posterior up to
a constant), and qφ(θ) be our variational approximation

I The ELBO is

L(φ) = Eq(log p(x, θ)− log qφ(θ))

I Instead of requiring a closed-form lower bound and
differentiating afterwards, we can take derivatives directly

I As shown later, this leads to a stochastic optimization
approach that handles massive data sets as well.
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I Compute the gradient

∇φL = ∇φEq(log p(x, θ)− log qφ(θ))

=

∫
∇φqφ(θ)(log p(x, θ)− log qφ(θ)) dθ

− qφ(θ)∇φ log qφ(θ) dθ

=

∫
qφ(θ)∇φ log qφ(θ)(log p(x, θ)− log qφ(θ))

− qφ(θ)∇φ log qφ(θ) dθ

= Eq (∇φ log qφ(θ)(log p(x, θ)− log qφ(θ)− 1))

Using ∇φ log qφθ =
∇φqφ(θ)
qφ(θ)



Score Function Estimator 17/32

I Recall that

∇φL = Eq (∇φ log qφ(θ)(log p(x, θ)− log qφ(θ)− 1))

I Note that
Eq∇φ log qφ(θ) = 0

I We can simplify the gradient as follows

∇φL = Eq (∇φ log qφ(θ)(log p(x, θ)− log qφ(θ)))

I This is known as score function estimator or REINFORCE
gradients (Williams, 1992; Ranganath et al., 2014; Minh et
al., 2014)



Monte Carlo Estimate 18/32

∇φL = Eq (∇φ log qφ(θ)(log p(x, θ)− log qφ(θ)))

I Unbiased stochastic gradients via Monte Carlo!

1

S

S∑
s=1

∇φ log qφ(θs)(log p(x, θs)− log qφ(θs)), θs ∼ qφ(θ)

I The requirements for inference
I Sampling from qφ(θ)
I Evaluating ∇φ log qφ(θ)
I Evaluating log p(x, θ) and log qφ(θ)

I This is called Black Box Variational Inference (BBVI):
no model specific work! (Ranganath et al., 2014)
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Ranganath et al., 2014
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Variance of the gradient can be a problem

Varqφ(θ) = Eq
(
(∇φ log qφ(θ)(log p(x, θ)− log qφ(θ))−∇φL)2

)

Adapted from Blei, Ranganath and Mohamed

I magnitude of log p(x, θ)− log qφ(θ) varies widely

I rare values sampling

I too much variance to be useful
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I To make BBVI work in practice, we need methods to
reduce the variance of naive Monte Carlo estimates

I Control Variates. To reduce the variance of Monte Carlo
estimates of E(f(x)), we replace f with f̂ such that
E(f̂(x)) = E(f(x)). A general class

f̂(x) = f(x)− a(h(x)− Eh(x))

I a can be chosen to minimize
the variance.

I h is a function of our choice.
Good h have high correlation
with the original function f .
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f̂(x) = f(x)− a(h(x)− Eh(x))

I For variational inference, we need h functions with known q
expectation

I A commonly used one is h(θ) = ∇φ log qφ(θ), where

Eq(∇φ log qφ(θ)) = 0, ∀q

I The variance of f̂ is

Var(f̂) = Var(f) + a2Var(h)− 2aCov(f, h)

and the optimal scaling is a∗ = Cov(f, h)/Var(h). In
practice this can be estimated using the empirical variance
and covariance on the samples
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I When h(θ) = ∇φ log qφ(θ), the control variate gradient is

∇φL = Eq (∇φ log qφ(θ)(log p(x, θ)− log qφ(θ)− a))

and a is called a baseline.

I Baselines can be constant, or input-dependent a(x).

I While we can estimate the baseline using the samples as
before, people often use a model-agnostic baseline to centre
the learning signal (Minh and Gregor, 2014)

ρ = arg min
ρ

Eq(`(x, θ, φ)− aρ(x))2

where the learning signal is

`(x, θ, φ) = log p(x, θ)− log qφ(θ)



Rao-Blackwellization 24/32

I We can use Rao-Blackwellization to reduce the variance by
integrating out some random variables.

I Consider the mean-field variational family

q(θ) =

d∏
i=1

qi(θi|φi)

I Let q(i) be the distribution of variables that depend on the
ith variable (i.e., the Markov blanket of θi and θi), and let
pi(x, θ(i)) be the terms in the joint probability that depend
on those variables.

∇φiL = Eq(i)
(
∇φi log qi(θi|φi)(log pi(x, θ(i))− log qi(θi|φi))

)
I This can be combined with control variates.
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I Another commonly used variance reduction technique is
the reparameterization trick (Kingma et al., 2014;
Rezende et al., 2014)

I The Reparameterization

θ = gφ(ε), ε ∼ qε(ε) =⇒ θ ∼ qφ(θ)

I Example:

θ = εσ + µ, ε ∼ N (0, 1) ⇐⇒ θ ∼ N (µ, σ2)

I Compute the gradient via the reparameterization trick

∇φL = ∇φEqφ(θ)(log p(x, θ)− log qφ(θ))

= ∇φEqε(ε)(log p(x, gφ(ε))− log qφ(gφ(ε)))

= Eqε(ε)∇φ(log p(x, gφ(ε))− log qφ(gφ(ε)))
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Kucukelbir et al., 2016
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Score Function

I Differentiates the density
∇φqφ(θ)

I Works for general models,
including both discrete and
continuous models.

I Works for large class of
variational approximations

I May suffer from large
variance

Reparameterization

I Differentiates the function
∇φ(log p(x, θ)− log qφ(θ))

I Requires differentiable
models

I Requires variational
approximation to have
form θ = gφ(ε)

I Better behaved variance in
general



Doubly Stochastic Optimization 28/32

I Scale up previous stochastic variational inference methods
to large data set via data subsampling.

I Replace the log joint distribution with unbiased stochastic
estimates

log p(x, θ) ' log p(θ) +
n

m

m∑
i=1

log p(xti |θ), m� n

I Example: score function estimator

∇̂φL =
1

S

S∑
s=1

∇φ log qφ(θs)

(
log p(θs) +

n

m

m∑
i=1

log p(xti |θs)

− log qφ(θs)

)
, θs ∼ qφ(θ)



Summary 29/32

I When the data size is large, we can use stochastic
optimization to scale up VI.

I For conditional exponential models, we can use noisy
natural gradient.

I For general models, naive stochastic gradient estimators
may have large variance, variance reduction techniques are
often required.
I Score function estimator (for both discrete and continuous

latent variable)
I The reparameterization trick (for continuous variable, and

requires reparameterizable variational family)

I We can also combine score function estimators with the
reparameterization trick for more general and robust
stochastic gradient estimators (Ruiz et al., 2016)
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