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I EM algorithm finds the MLE for latent variable model

L(θ) = log p(x|θ) = log
∑
z

p(x, z|θ)

I EM update formula

θ(t+1) = arg max
θ

Q(t)(θ) = arg max
θ

Ep(z|x,θ(t)) log p(x, z|θ)

I EM requires the posterior p(z|x, θ(t)) is known. What if

p(z|x, θ(t)) is unknown?
I If somehow we can sample from p(z|x, θ(t)), we can use

Monte Carlo estimates, that is Monte Carlo EM.
I However, the associated computation may be expansive.
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I Recall EM maximizes the lower bound

F(q, θ(t)) = Eq(z) log
p(x, z|θ)
q(z)

≤ L(θ), ∀q(z)

I When the best q(z) = p(z|x, θ(t)) is not available, we can
use approximate q(z) instead.

I A widely used approximation is the mean-field
approximation

q(z) =

d∏
i=1

qi(zi)
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I In that case, the lower bound is

F(q(z), θ(t)) =

∫ d∏
i=1

qi(zi) log
p(x, z|θ(t))∏d
i=1 qi(zi)

dz1dz2 . . . dzd

=

∫ d∏
i=1

qi(zi) log p(x, z|θ(t)) dz1dz2 . . . dzd

−
d∑
i=1

∫
qi(zi) log qi(zi) dzi

I Coordinate Ascent

q
(t)
i (zi) ∝ exp

(
E−qi log p(x, z|θ(t))

)
, i = 1, . . . , d
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I E-step. Run coordinate ascent several times to obtain good
mean-field approximation

q(t)(z) =

d∏
i=1

q
(t)
i (zi)

compute the expected complete data log-likelihood

Q(t)(θ) = Eq(t)(z) log p(x, z|θ)

I M-step. Update θ to maximize Q(t)(θ)

θ(t+1) = arg max
θ

Q(t)(θ)
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I Now let us consider Bayesian inference for latent variable
models

p(z, θ|x) ∝ p(x, z|θ)p(θ)

I We can lower bound the marginal likelihood

L(x) = log p(x) = log

∫
p(x, z|θ)p(θ) dzdθ

= log

∫
q(z, θ)

p(x, z|θ)p(θ)
q(z, θ)

dzdθ

≥
∫
q(z, θ) log

p(x, z|θ)p(θ)
q(z, θ)

dzdθ

= F(q(z, θ))

I Maximizing this lower bound F is equivalent to minimizing
DKL(q(z, θ)‖p(z, θ|x))
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I Again, we consider a simple factorized approximation
q(z, θ) = qz(z)qθ(θ)

L(x) ≥
∫
qz(z)qθ(θ) log

p(x, z|θ)p(θ)
qz(z)qθ(θ)

dzdθ

= F(qz(z), qθ(θ))

I Maximizing this lower bound F , leads to EM-like iterative
updates

q(t+1)
z (z) ∝ exp

(
E
q
(t)
θ (θ)

log p(x, z|θ)
)

q
(t+1)
θ (θ) ∝ p(θ) · exp

(
E
q
(t+1)
z (z)

log p(x, z|θ)
)
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Let’s focus on conjugate-exponential (CE) models, which satisfy

Condition 1
The joint probability over variables is in the exponential family

p(x, z|θ) = h(x, z) exp (φ(θ) · T (x, z)−A(θ))

Condition 2
The prior over parameters is conjugate to this joint probability

p(θ|η, ν) ∝ exp (φ(θ) · ν − ηA(θ))

Conjugate priors are computationally convenient and have an
intuitive interpretation:

I η: number of pseudo-observations

I ν: values of pseudo-observations
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Now suppose we have an iid data set x = {x1, . . . , xn}
I VB E-step.

q(t+1)
z (z) ∝ exp

(
E
q
(t)
θ (θ)

log p(x, z|θ)
)

∝
n∏
i=1

h(xi, zi) exp
(
φ̄ · T (xi, zi)

)
where φ̄ = E

q
(t)
θ

(φ(θ))

I VB M-step

q
(t+1)
θ (θ) ∝ exp

(
φ(θ) ·

(
ν +

n∑
i=1

T (xi, zi)

)
− (η + n)A(θ)

)

where T (xi, zi) = E
q
(t+1)
z

(T (xi, zi))
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EM for MAP

I Goal: maximize p(x, θ)

I E-step: compute

q(t+1)
z (z) = p(z|x, θ(t))

I M-step:

θ(t+1) = arg max
θ

Q(t)(θ)

Q(t)(θ) = E
q
(t+1)
z

log p(x, z, θ)

Variational Bayesian EM

I Goal: lower bound p(x)

I VB E-step: compute

q(t+1)
z (z) = p(z|x, φ̄)

I VB M-step:

q
(t+1)
θ (θ) ∝ exp

(
Q(t)(θ)

)
Q(t)(θ) = E

q
(t+1)
z

log p(x, z, θ)
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I Reduces to the EM algorithm if qθ(θ) = δ(θ − θ∗).
I F increases monotonically, and incorporates the model

complexity penalty.

I Analytical parameter distributions

I VB E-step has the same complexity as corresponding E
step, and is almost identical except that it uses the
expected natural parameters, φ̄.

I The lower bound given by VBEM can be used for model
selection.
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I In Bayesian model selection, we want to select the model
class with the highest marginal likelihood (evidence)

p(x|m) =

∫
p(x|θ,m)p(θ|m)dθ

I Occam’s Razor
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Adapted from Zoubin Ghahramani
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I Bayesian Information Criterion (BIC):

log p(x|m) ≈ log p(x|θ̂MAP,m)− d

2
log n

I Annealed Importance Sampling (AIS):

Zk =

∫
p(x|θ,m)τkp(θ|m)dθ, 0 = τ0 < · · · < τK = 1

log p(x|θ) = ZK =

K−1∏
k=0

Zk+1

Zk

where
Zk+1

Zk
can be estimated via importance sampling.

I Variational Bayesian EM (VB): use VBEM lower
bound estimate
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I A simple bipartite graphical model: two binary hidden
variables, and four five-valued discrete observed variables

I Experiment: there are 136 distinict structures with 2 latent
variables as potential parents of 4 conditionally
independent observed variables

I Score each structure with 3 methods: BIC, VB and the
gold standard AIS.
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VB score finds correct structure earlier, and more reliably
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