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I It is nontrivial to design a good trial distribution for doing
importance sampling in high-dimensional problems.

I One of the most useful strategies in these problems is to
build up the importance distribution sequentially.

I Suppose we can decompose x = (x1, . . . , xd) where each of
the xj may be multidimensional. Then, the importance
distribution can be constructed as follows

q(x) = q1(x1)q2(x2|x1) · · · qd(xd|x1, . . . , xd−1)

I We could, of course, decompose the target density
accordingly

π(x) = π(x1)π(x2|x1) · · ·π(xd|x1, . . . , xd−1)
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I The importance weight is

w(x) =
π(x1)π(x2|x1) · · ·π(xd|x1, . . . , xd−1)
q1(x1)q2(x2|x1) · · · qd(xd|x1, . . . , xd−1)

I This suggests a recursive way of computing and monitoring
the importance weight

wt(x≤t) = wt−1(x≤t−1)
π(xt|x1, . . . , xt−1)
qt(xt|x1, . . . , xt−1)

I Ideally, this approach provides guidance in designing
qt(xt|x<t) and allows automatic termination of the
generating process by monitoring the partial weight w≤t

I However, the conditional distribution π(xt|x<t) is
unknown. Estimation could be as difficult as, or even
harder than, the original problem.
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I One remedy for this issue is to introduce a sequence of
auxiliary distributions

π1(x1), π2(x1, x2), . . . , πd(x1, x2, . . . , xd)

where πt(x≤t) is a reasonable approximation to the
marginal distribution π(x≤t), ∀1 ≤ t ≤ d− 1 and πd = π.

I Note that πt can be unnormalized and they only serve as
“guides” to our construction of the whole sample
x = (x1, . . . , xd).

I The sequential importance sampling (SIS) method can
then be defined as follows
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I Let N be the number of particles used for importance
sampling.

I At time 1, assume we have approximate π1(x1) and Z1

using importance distribution q1(x1); that is

π̂1(dx1) =

N∑
i=1

W
(i)
1 δ

X
(i)
1

(dx) where W
(i)
1 ∝ w1(X

(i)
1 )

Ẑ1 =
1

N

N∑
i=1

w1(X
(i)
1 )

with

w1(x1) =
π1(x1)

q1(x1)
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I At time 2, we want to approximate π2(x1, x2) and Z2 using
an importance distribution q2(x1, x2).

I Since q2(x1, x2) = q1(x1)q2(x2|x1), we can reuse the

samples X
(i)
1 from q1(x1) to build the IS approximation of

π1(x1). This only makes sense if π2(x1) ≈ π1(x1).
I Now we sample X

(i)
2 |X

(i)
1 ∼ q2(x2|X

(i)
1 ) to obtain

(X
(i)
1 , X

(i)
2 ) ∼ q2(x1, x2), and the importance weights are

w2(x1, x2) =
π2(x1, x2)

q2(x1, x2)
=
π1(x1)

q1(x1)

π2(x1, x2)

π1(x1)q2(x2|x1)

= w1(x1)
π2(x1, x2)

π1(x1)q2(x2|x1)
I For the normalized weights

W
(i)
2 ∝W

(i)
1

π2(X
(i)
1 , X

(i)
2 )

π1(X
(i)
1 )q2(X

(i)
2 |X

(i)
1 )
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I Generally speaking, at time t, since

qt(x≤t) = q1(x1)q2(x2|x1) · · · qt(xt|x≤t−1)
= qt−1(x≤t−1)qt(xt|x≤t−1)

we can sample X
(i)
t ∼ qt(xt|X

(i)
≤t−1) to obtain samples from

qt(x≤t).

I The importance weights are updated according to

wt(x≤t) =
πt(x≤t)

qt(x≤t)
= wt−1(x≤t−1)

πt(x≤t)

πt−1(x≤t−1)qt(xt|x≤t−1)
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I At time t = 1, sample X
(i)
1 ∼ q1(·) and set

w1(X
(i)
1 ) =

π1(X
(i)
1 )

q1(X
(i)
1 )

.

I At time t ≥ 2
I sample X

(i)
t ∼ qt(·|X

(i)
≤t−1)

I compute wt(X
(i)
≤t) = wt−1(X

(i)
≤t−1)

πt(X
(i)
≤t

)

πt−1(X
(i)
≤t−1

)qt(X
(i)
t |X

(i)
≤t−1

)
.

I At any time t, we have

X
(i)
≤t ∼ qt(X≤t), wn(X

(i)
≤t) =

πt(X
(i)
≤t)

qt(X
(i)
≤t)

thus we can obtain easily an IS approximation of
πd(x1, . . . , xd) and of Zd.
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The Markovian, nonlinear, non-Gaussian state space model

I Unobserved signal or states {xt|t ∈ N}
I Observations or output {yt|t ∈ N+} or {yt|t ∈ N}

with the following probabilities

I p(x0) – initial distribution

I p(xt|xt−1), t ≥ 1 – transition probability

I p(yt|xt), t ≥ 0 – emission/observation probability
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I Assume we receive y≤n, we are interested in the posterior
distribution of the unobserved signal

p(x≤n|y≤n) =
p(x≤n, y≤n)

p(y≤n)

and estimating p(y≤n) where

π(x≤n) = p(x≤n, y≤n) = p(x0)

n∏
t=1

p(xt|xt−1)
n∏
t=0

p(yt|xt)

Zn = p(y≤n) =

∫
· · ·
∫
p(x0)

n∏
t=1

p(xt|xt−1)
n∏
t=0

p(yt|xt)dx0:n
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MCMC might not be well-suited for recursive estimation
problems

I It can be hard to design a good proposal q

I What happens if we get a new data point yn+1?

I We cannot (directly) reuse the samples {x(i)≤n}
I We have to run a new MCMC simulations for

p(x≤n+1|y≤n+1)

Importance sampling has similar difficulties

I Designing a good importance distribution can be hard

I When seeing new data yn+1, we cannot reuse the samples
and weights for time n

{x(i)≤n, w
(i)
n }Ni=1

to sample from p(x≤n+1|y≤n+1)
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I Assume that the importance distribution can be factored as

q(x≤n|y≤n) = q(x≤n−1|y≤n−1) · q(xn|x≤n−1, y≤n)

= q(x0|y0)
n∏
t=1

q(xt|x≤t−1, y≤t)

I The importance weight can then be evaluated recursively

W
(i)
t ∝W

(i)
t−1

p(X
(i)
t |X

(i)
t−1)p(yt|X

(i)
t )

q(X
(i)
t |X

(i)
≤t−1, y≤t)

(1)

I Given the past trajectories {X(i)
≤t−1|1 ≤ i ≤ N}, we can

I simulate X
(i)
t ∼ q(X

(i)
t |X

(i)
≤t−1, y≤t)

I update the weight W
(i)
t for X

(i)
≤t based on w

(i)
t−1 using eq. (1)
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I We can select

q0(x0|y0) = p(x0), qt(xt|x≤t−1, y≤t) = p(xt|xt−1), 1 ≤ t ≤ n

I At time t = 1, sample X
(i)
0 ∼ p(x0) and set

w
(i)
0 = p(y0|X(i)

0 )

I At time t ≤ 2
I sample X

(i)
t ∼ p(·|X

(i)
≤t−1)

I compute w
(i)
t = w

(i)
t−1p(yt|X

(i)
t ).

I At time t = n, we have

X
(i)
≤n ∼ p(x0)

n∏
t=1

p(xt|xt−1), w(i)
n =

n∏
t=0

p(yt|X(i)
t )

thus we can obtain easily an IS approximation of
p(x≤n|y≤n) and of p(y≤n).
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I The optimal zero-variance density at time n is simply given
by

qn(x≤n) = π̃n(x≤n) =
πn(x≤n)

Zn

I As we have

π̃n(x≤n) = π̃n(x1)π̃n(x2|x1) · · · π̃n(xn|x≤n−1)

where π̃n(xt|x≤t−1) ∝ πt(xt|x≤t−1). This means that we
have

qoptt (xt|x≤t−1) = π̃n(xt|x≤t−1)

I Obviously this result does depend on n so it is only useful
if we are only interested in a specific target πn(x≤n) and in
such scenarios we need to typically approximate
π̃n(xt|x≤t−1) which would be difficult in practice.



Locally Optimal Importance Distribution 15/35

I One sensible strategy consists of selecting qt(xt|x≤t−1) at
time t so as to minimize the variance of the importance
weights.

I We have for the importance weight

wt(x≤t) =
πt(x≤t)

qt−1(x≤t−1)qt(xt|x≤t−1)

=
Ztπ̃t(x≤t−1)

qt−1(x≤t−1)
· π̃t(xt|x≤t−1)
qt(xt|x≤t−1)

I It follows directly that we have

qoptt (xt|x≤t−1) = π̃t(xt|x≤t−1)
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I The weight updating formula is

wt(x≤t) = wt−1(x≤t−1)
πt(x≤t)

πt−1(x≤t−1)π̃t(xt|x≤t−1)

= wt−1(x≤t−1)
πt(x≤t−1)

πt−1(x≤t−1)

I This locally optimal importance density will be used again
and again.

I It is often impossible to sample directly from π̃t(xt|x≤t−1)
and/or compute πt(x≤t−1) =

∫
πt(x≤t)dxt.

I In such cases, it is necessary to approximate π̃t(xt|x≤t−1)
and πt(x≤t−1).
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I In the case of state space models, we have

qoptt (xt|x≤t−1) = p(xt|x≤t−1, y≤t) = p(xt|xt−1, yt)

=
p(xt|xt−1)p(yt|xt)

p(yt|xt−1)

I In this case,

wt(x≤t) = wt−1(x≤t−1)
p(x≤t, y≤t)

p(x≤t−1, y≤t−1)p(xt|xt−1, yt)
= wt−1(x≤t−1)p(yt|xt−1)
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I Consider the simple model

Xt = αXt−1 + ξt

Yt = Xt + σηt

where X0 ∼ N (0, 1), ξt
iid∼ N (0, 1), ηt

iid∼ N (0, 1).

I Recall that previously we simply used

qt(xt|x≤t−1) = p(xt|xt−1) = N (αxt−1, 1)

I The locally optimal importance distribution actually is

qoptt (xt|xt−1) = p(xt|xt−1, yt)

= N
(

σ2

σ2 + 1

(
αxt−1 +

yt
σ2

)
,

σ2

σ2 + 1

)
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Problem solved?
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Weights become highly degenerated after few steps
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I SIS is an attractive idea: sequential and parallizable, only
requires designing low-dimensional proposal distributions.

I SIS can only work for moderate size problems.

I Is there a way to partially fix this problem?



Sequential Importance Resampling 22/35

I As time t increases, the variance of the unnormalized

weights {w(i)
n } tend to increase and all the mass is

concentrated on a few particles.

I The key idea to eliminate this weight degeneracy is to get
rid of particles with low importance weights and multiply
particles with high importance weights.

I The intuition is that if a particle at time t has a low weight
then typically it will still have a low weight at time t+ 1
(counterexamples can be easily found though).

I In general, you may want to focus your computation efforts
on the more “promising” parts of the space.
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I Introduce a resampling each time step (or occasionally)

I At time t, IS provides the following approximation of
πt(x≤t)

π̂t(dx≤t) =

N∑
i=1

W
(i)
t δ

X
(i)
≤t

(dx≤t)

I The simplest resampling scheme consists of sampling N

times X̃
(i)
≤t ∼ π̂t(dx≤t) to build the new approximation

π̃t(dx≤t) =
1

N

N∑
i=1

δ
X̃

(i)
≤t

(dx≤t) =
1

N

N∑
i=1

N
(i)
t δ

X
(i)
≤t

(dx≤t)

I The weights of the new particles are w̃
(i)
t = 1

N .
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I Note that we can rewrite

π̃t(dx≤t) =

N∑
i=1

N
(i)
t

N
δ
X

(i)
≤t

(dx≤t)

where (N
(1)
t , . . . , N

(N)
t ) ∼ Multinomial(N ;W

(1)
t , . . . ,W

(N)
t ).

EN (i)
t = NW

(i)
t , VarN

(i)
t = NW

(i)
t (1−W (i)

t )

I It follows that the resampling step is an unbiased operation

E(π̃t(dx≤t)|π̂t(dx≤t)) = π̂t(dx≤t)

but clearly it introduces some errors “locally” in time.
That is for any test function φ, we have

Varπ̃tφ(X≤t) ≥ Varπ̂tφ(X≤t)
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I Resampling at each time step is harmful. We should
resample only when necessary.

I To measure the variation of the weights, we can use the
Effective Sample Size (ESS) or the Coefficient of Variation
CV.

ESS =

(
N∑
i=1

(W
(i)
t )2

)−1
, CV =

(
1

N

N∑
i=1

(NW
(i)
t − 1)2

) 1
2

I We have ESS = N and CV = 0 if W
(i)
t = 1

N ,∀i.
I We have ESS = 1 and CV =

√
N − 1 if W

(i)
t = 1 and

W
(j)
t = 0, ∀j 6= i.

I Dynamic Resampling: if the variation of the weights is too
high, then resample the particles.
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I The above SMC strategy performs remarkably well in
terms of estimation of the marginals p(xn|y≤n). This is
what is only necessary in many applications thankfully.

I However, the joint distribution p(x≤n|y≤n) is often poorly
estimated when k is large.

I This is known as the path degeneracy problem, which is a
product of the weight degeneracy problem.

I Since it is necessary to resample the particles, looking
backward in time, many of the particles will be exactly the
same. Therefore, the approximation of the joint
distribution is in terms of a large number of similar paths,
which cannot be expected to work well.

I Resampling only partially solve our problems.
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I Theorem. For any bounded function ψ and any p > 1

E
(∣∣∣∣∫ ψt(x≤t)(π̂t(x≤t)− πt(x≤t))dx≤t

∣∣∣∣p)1/p

≤ Ct‖ψ‖∞
N

I It looks like a nice result but it is rather useless as Ct
increases polynomially/exponentially with time.

I To achieve a fixed precision, this would require to use a
time-increasing number of particles N .

I For more details, see Del Moral 2004.
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I We now describe an SMC technique that is designed to
simulate from a sequence of probability densities on a
common state-space.

I Let us assume that it is of interest to sample from a single
probability π, which is ‘complex’.

I The approach here is to introduce a sequence of densities.
The sequence starts at a very simple distribution and then
moves towards π with related distributions interpolating
between π and this initial distribution.

I The method is termed SMC samplers (Chopin 2002, Del
Moral et al. 2006).
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I As an example, consider

πt(x) ∝ π(x)φt , x ∈ Rd

with 0 < φ1 < · · · < φp = 1.

I The idea is to start with a very simple density φ1 = 0 and
then move gradually towards π.

I When φ1 ≈ 0 the target density is ‘flat’ and should be easy
to sample from. Then, by appropriately constructing the
densities, it is possible to use the SMC algorithm to
interpolate between π1 and π.

I This idea has been successfully used in many different
contexts, such as for rare events estimation, maximum
likelihood estimation, as well as approximate Bayesian
computation.
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I Recall that SMC methods sample from a sequence of
densities of increasing dimension.

I Our sequence of densities are on a common space.

I Consider the following idea. Perform IS w.r.t. π1 via
proposal η1. Then to move to the next density, use a
Markov kernel K2.

I In this scenario, the importance weight is

π2(x2)

η2(x2)

where η2(x2) =
∫
η1(x1)K2(x1, x2)dx1.

I In most scenarios of interest, one cannot compute this
importance weight.
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I It turns out that one approach (Del Moral 2006) to
circumvent this problem is to introduce a sequence of
densities

π̃t(x≤t) = πt(xt)

t∏
j=2

Lj(xj , xj−1)

and use SMC methods on this sequence.

I The {Lj} are artificial backward Markov kernels and up-to
some minimal technical requirements are essentially
arbitrary.

I The algorithm is thus nothing more than SIS. The
incremental weights are of the form

π̃t(x≤t)

π̃t−1(x≤t−1)Kt(xt−1, xt)
=

πt(xt)Lt(xt, xt−1)

πt−1(xt−1)Kt(xt−1, xt)
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I Proposition. The sequence of kernels {Lopt
j }(j = 1, . . . , t)

minimizing the variance of the unormalized importance
weight wt(x≤t) is given for any j and t by

Lopt
j (xj , xj−1) =

ηj−1(xj−1)Kj(xj−1, xj)

ηj(xj)

and in this case

wt(x≤t) =
πt(xt)

ηt(xt)

I When Kt is an MCMC kernel of invariant distribution πt,
we can use a generic approximation

Lt(xt, xt−1) =
πt(xt−1)Kt(xt−1, xt)

πt(xt)
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I In this case, we have unnormalized incremental weight

w̃t(xt−1, xt) =
πt(xt−1)

πt−1(xt−1)

I In our previous example, the importance weight can be
constructed as

W
(i)
t ∝W

(i)
t−1

πt(x
(i)
t−1)

πt−1(x
(i)
t−1)

= W
(i)
t−1π(x

(i)
t−1)

φt−φt−1

I This algorithm can work very well in practice; see e.g.
(Neal 2001; Chopin 2002; Del Moral et al, 2006).
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