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I Consider the following linear regression model:

y|X,β, σ2 ∼ N (Xβ, σ2In)

I y is a column vector of n observations for the outcome
variable, X is an n× (p+ 1) matrix of observed predictors
with its first column being all 1’s.

I β is a column vector with p+ 1 elements (β0, . . . , βp) where
β0 is the intercept and βj represents the effect of the j-th
predictor xj on y.
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I To perform Bayesian analysis, we need to obtain the
posterior distribution of parameters based on the model
and the prior.

I A common prior for parameters are

σ2 ∼ Inv-χ2(ν0, σ
2
0)

β ∼ Np+1(µ0,Λ0)

where

µ0 = (µ00, µ01, . . . , µ0p), Λ0 = diag(τ20 , τ
2
1 , . . . , τ

2
p )

I µ0 is typically set to zero (unless we believe otherwise), Λ0

should be sufficiently broad.
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I The posterior distribution of β has the following closed
form:

β|X, y, σ2 ∼ N (µn,Λn)

where

µn =
(
X ′∗Σ

−1
∗ X∗

)−1
X ′∗Σ

−1
∗ y∗, Λn =

(
X ′∗Σ

−1
∗ X∗

)−1
X∗ =

[
x
Ip+1

]
, y∗ =

[
y
µ0

]
, Σ∗ =

[
σ2In 0

0 Λ0

]
I Looking at it this way, the prior plays the role of extra

data with xβ = Ip+1, yβ = µ0 and the covariance Λ0.

I That’s why Bayesian models do not break down when
p > n.
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I Now, we want to obtain the posterior distribution of σ2

I Given β, again we have a simple normal model with
observations yi with known mean Xβ, unknown variance
σ2, and conditionally conjugate prior Inv-χ2(ν0, σ

2)

I As we saw before, the posterior distribution of σ2|X, y, β is
also scaled Inv-χ2

σ2|X, y, β ∼ Inv-χ2

(
ν0 + n,

ν0σ
2
0 + nν

ν0 + n

)

ν =
1

n

n∑
i=1

(yi − xiβ)2
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I If we do not have an informative prior, we can instead use
the following prior

p(β, σ2|X) ∝ σ−2

I For β this is equivalent to taking all τ2j →∞.

I The posterior distribution therefore becomes

β|y, σ2 ∼ N (β̂, Vβσ
2)

β̂ = (X ′X)−1X ′y

Vβ = (X ′X)−1
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I The posterior distribution of σ2 also has a closed form

σ2|X, y, β̂ ∼ Inv-χ2(n− p− 1, s2)

s2 =
1

n− p− 1

n∑
i=1

(yi − xiβ̂)2

I These close-form conditional posterior distributions allow
efficient Gibbs sampling for Bayesian linear regression
models.
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I Consider the children’s test score example discussed by
Gelman and Hill (2007).

I In this example, we are interested in the effect of mother’s
education (mhsg) and her IQ (miq) on the cognitive test
score of 3 to 4 year old children.

I For our Bayesian model, we use the following broad priors

σ2 ∼ Inv-χ2(1, 0.5)

β ∼ Np+1(0, 1002I)

I We use the Gibbs sampler to obtain 10000 samples and
discarded the first 1000.
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I The following plot shows the trace plot of posterior samples
for β’s
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I The following plot is the trace plot of posterior samples for
σ
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I Using the MCMC samples, we can also plot the posterior
distribution of β’s

I These are of course marginal distributions. We can plot the
joint distribution of (βmhsg, βmiq)
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I The following plot shows the scatter plot of posterior
samples for βmhsg and βmiq

I Note that in general, β’s are not independent in posterior
although we might assume them independent in prior.
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I We can also summarize the result of our analysis (i.e.,
posterior mean and 95% credible intervals) as follows
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I For the second example, we are interested in modeling
body fat in terms of age and gender

E(bodyFat) = β0 + β1age + β2gender

I The above model, however, assumes that the effect of age
on body fat is the same for Male (gender = 0) and Female
(gender = 1)

I If we don’t believe in that, we can include an interaction
term ageGender = age× gender into our model

E(bodyFat) = β0 + β1age + β2gender + β12ageGender
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I Before analyzing the data, we first center and standardize
predictors so they have mean zero and standard deviation
1.

I This type of transformation (centering predictors and
maybe the outcome variable too) is usually (not always)
appropriate and makes setting up the priors easier.

I Moreover, we use the log(fat) as the outcome.

I We use the following priors for model parameters:

σ2 ∼ Inv-χ2(1, 0.5)

βj ∼ N (0, 102)
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I The following plot shows the trace plot of posterior samples
for β’s
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I As before, we can also summarize the result of our analysis
in the following table
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I Once we develop a model and perform Bayesian inference
to obtain posterior estimation, we need to evaluate the
adequacy of our model and assumption.

I This is done mainly based on how well it agrees with the
data we have already observed, or we observe in future.

I Note that this is not the question of whether the model is
true of false (“all models are wrong, but some are useful” –
George Box), rather, how much our inference is affected by
our simplifications.

I One good approach for evaluating models is using future
observations assuming they are generated based on the
same process as the observed data.

I Since this is not always possible, sometimes we hold out a
part of the data, and treat them as future observations.
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I An alternative approach for model checking is to replicate
data (denoted as yrep) using the posterior distribution and
make sure there is no substantial and systematic difference
between the replicated data and observed data.

I To replicate data, we can sample from the posterior
distribution, and use each sample to generate a set of data.
For example, if we are assuming a normal model
y ∼ N (µ, σ2). We first obtain the joint posterior
distribution of (µ, σ2), generate L samples from this
distribution, and for each ` = 1, . . . , L, generate
yrep ∼ N (µ`, (σ2)`).

I If we have a hierarchical model, we have to first start with
hyperparameters, given their sampled values, we sample
from the parameters of the model, replicate new data as
before.



Model Checking 20/49

I For linear regression models, we generate samples
(β`, (σ2)`) from the posterior distribution of (β, σ2), and
then generate n samples yrep ∼ N (Xβ`, (σ2)`).

I Note that yrep is different from ỹ (i.e., future observations)
since it has the same X as the observed data.

I In practice, we already have samples from the posterior
distribution when we use MCMC simulation. Therefore, we
can directly use these samples to replicate data.

I As mentioned above, we perform model checking by
comparing the observed data y and replicated datasets yrep.

I We can do this comparison based on some appropriate test
quantity, T (y, θ), where θ = (β, σ2) in regression models.

I Note that in the Bayesian framework, test quantities could
be a function of both data and unknown parameters θ.
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I Typical test quantities are mean, median, variance, min,
and max. We can use multiple of these tests to evaluate
different aspect of the model.

I We can calculate the tail probability

pB = p(T (yrep, θ) ≥ T (y, θ))

which is the probability that the replicated data could be
more extreme than the observed data, and use it as a
measure of the discrepancy between the observed data and
what we would expect according to the model.

I We can obtain this by simply estimating the proportion of
replicated samples for which T (yrep` , θ`) ≥ T (y, θ`), where
` = 1, . . . , L.

I The model is suspected if pB is close to 0 or 1.
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I The following plot shows the observed average of y in the
children’s test score example compared to the averages
obtained from the replicated samples. The estimated pB is
0.53.
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I A main objective of regression analysis is to predict future
observations for which we would known the value of their
predictors x̃, and we are interested in predicting their
unknown outcome ỹ.

I In order to predict ỹ when we know x̃, we use the posterior
predictive probability p(ỹ|y).

I To sample from p(ỹ|y), we could use its closed form (which
is a multivariate t distribution). However, we could simply
sample (β, σ2) from their joint posterior distribution, and
then sample ỹ ∼ N (x̃β, σ2).

I Since we used MCMC simulation, we already have samples
from the posterior distribution, which we can use directly
(after discarding the burn-in samples) to generate ỹ.

I Finally, we can use the posterior predictive mean of ỹ|y to
predict the outcome for future observation.
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I To get the posterior predictive mean, instead of sampling
ỹ’s and averaging them, we can simply do as follows

E(ỹ|y) =
1

L

L∑
`=1

x̃β`

where L is the number of posterior samples β` after
convergence.

I Although for the above model, we could use x̃β̂ (where β̂ is
the posterior mean of β). This is not the case in general.
Always find the value of the function (in this case x̃β) over
the posterior samples and then average.
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I We now show how we can simulate data, build a linear
regression model and predict future observations (in this
case, simulated after building the model, or before but not
used in the model).

I For simulations, because this is an imaginary situation, we
can choose any arbitrary prior. Let’s assume the following
priors:

βj ∼ N (0, 22), j = 1, . . . , p

σ2 ∼ Inv-χ2(5, 1)

I Let’s set the number of predictors to 3 and sample one set
of β∗ = (β0, β1, β2, β3) and (σ2)∗ from the above priors.
These should be regarded as the true values of the
parameters.
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I Next, we create n samples of predictors x. Since in our
model we assume x are independent, we sample them
independently from some distribution. Here, we set
n = 150 and generate xij ∼ N (0, 1) for i = 1, . . . , n and
j = 1, 2, 3. Note that for j = 0, we use a column of 1’s.

I Now, we can simulate yi using the assumed linear model
with sampled predictors and true parameters

yi|xi, β, σ2 ∼ N (xβ∗, (σ2)∗)

I We regard the first 100 samples as observed data to build
our model (training set), and use the remaining 50 data
(test set) as future observation pretending we do not know
their outcome.

I Our objective is to predict outcome for the test set and
compare our answers to their true values.
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I We build a linear regression model as before, using the
prior we assumed and data we simulated.

I Using MCMC simulation, we obtain posterior samples for
β and σ2.

I We use these samples to obtain the posterior predictive
distribution and posterior predictive expectation (i.e., our
prediction) of y for the test set. These would be regarded
as our prediction.

I We can then use some common summary measure (e.g.,
MSE) to evaluate our model.
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I In general, our data might not conform with the
assumptions of linear models.

I For such situation, we need a more flexible family of
models.

I The class of generalized linear models (GLM), that
includes linear models as a special case, provides such
flexibility while it is still easy to use.

I Generalized linear models have three components:
I A random component
I A systematic component
I A link function
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I The random component identifies the response variable and
its probability distribution.

I In most situations, we assume some sort of exchangeablility
for the set of observed outcome values y1, . . . , yn, and
regard them as iid given a parametric model p(y|θ) from
the exponential family, such as normal, binomial,
multinomial and Poisson.

I In general, if the outcome variable is continuous and
real-valued, we use the normal distribution.

I If the outcome is binary, we use the Bernoulli/binomial
distribution. For outcome variables with multiple
categories, we use the multinomial instead. If the outcome
variable represent counts data, we use the poisson
distribution.
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I The systematic component specifies the set of predictors
(i.e., explanatory variables) x = (x1, . . . , xp) used in a
linear predictor function.

I As before, we also append a vector of ones at the beginning
of x.

I In the matrix form, the linear predictor function η = xβ,
where β = (β0, . . . , βp).

I Alternatively, for each observation i, where i = 1, . . . , n,
the linear predictor function is ηi = β0 +

∑p
j=1 xijβj .

I Also, as before, some of predictors could be a
transformation (e.g., x2) of original predictors.
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I The link function is a monotonic differentiable function
that connects the random and systematic components.

I More specifically, if µ = E(y|x), the link function g
connects µ to η such that g(µi) = ηi = β0 +

∑p
j=1 xijβj for

each observation i.

I For the ordinary linear model we discussed before, the link
function is identity: g(µi) = µi. That is µi = ηi = xiβ.
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I As mentioned before, for binary outcome variables, we use
the Binomial distribution

yi|ni, µi ∼ Binomial(ni, µi)

Bernoulli distribution is a special case when ni = 1.

I As usual, we define the systematic part of the model
ηi = xiβ.

I A common link function for this model is the logit function
defined as follows

g(µi) = log

(
µi

1− µi

)
= xiβ

where µi is the probability of success (i.e., yi = 1).

I Therefore,

µi =
1

1 + exp(−xiβ)
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I The likelihood is therefore defined in terms of β as follows

p(y|µ) ∝
n∏
i=1

µyii (1− µi)ni−yi

p(y|β) ∝
n∏
i=1

(
1

1 + exp(−xiβ)

)yi ( 1

1 + exp(xiβ)

)ni−yi

I Note that in this model the variance of y|x depends on the
mean and therefore will not be constant

Var(yi|xi) = niµi(1− µi)
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I This is a generalization of logistic regression when the
outcome could have multiple values (i.e., could belong to
one of K classes).

yi|ni, µi1, . . . , µiK ∼ Multinomial(ni, µi1, . . . , µiK)

where µik is the probability of class k for observation i such
that

∑K
k=1 µik = 1.

I yi is also a vector K elements with
∑K

k=1 yik = ni.

I The systematic part is now a vector ηik = xiβ, where β is a
matrix of size (p+ 1)×K.
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I Each column k (k = 1, 2, . . . ,K) corresponds to a set of
p+ 1 parameters associated with class K.

I This representation is redundant and results in
nonidentifiability, since one of the βk’s can be set to zero
without changing the set of relationship expressible with
the model.

I Usually, either the first of the last column would be set to
zero.

I In Bayesian models, removing this redundancy would make
it difficult to specify a prior that treats all classes
symmetrically. Therefore, we do not remove redundancy.
In this case, what matters is the difference between the
parameters of different classes.
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I For the multinomial logistic model, we use a generalization
of the link function we used for the binary logistic
regression

µik =
exp(xiβk)∑K

k′=1 exp(xiβk′)

I The likelihood in terms of β is as follows

p(y|µ) ∝
n∏
i=1

K∏
k=1

µyikik =

n∏
i=1

K∏
k=1

(
exp(xiβk)∑K

k′=1 exp(xiβk′)

)yik
I Here βk is the column vector of p+ 1 parameters

corresponding to class k.



Prior 37/49

I So far, we discussed the likelihood function for some
common GLMs.

I Within the Bayesian framework, we also need to specify
priors on model parameters.

I A common prior for β is normal prior: N (µ0j , τ
2
0j).

I Usually we set µ0 = 0 unless we have good reasons to
believe otherwise.

I After we specify the priors, the posterior sampling for β’s
can be performed using Metropolis algorithm with
Gaussian jumps, or more advanced method such as the
slice sampler.
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I Here, we discuss a logistic regression model with normal
priors for β.

I Recall that for logistic model, log-likelihood is obtained as
follows

p(y|β) ∝
n∏
i=1

(
1

1 + exp(−xiβ)

)yi ( 1

1 + exp(xiβ)

)ni−yi

log p(y|β) =

n∑
i=1

(yixiβ − ni log(1 + exp(xiβ))) + Const
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I If we use a N (0, τ20 I) prior for βj , the log-prior probability
given τ20 is simply

log p(β|τ20 ) = −‖β‖
2

2τ20
+ Const

I The log-posterior is therefore

log p(β|y) = −‖β‖
2

2τ20
+

n∑
i=1

(yixiβ − ni log(1 + exp(xiβ)))+Const

I Sometimes we may want to sample one parameter at a
time. In that case, we can treat other parameters as
constant (i.e., we don’t need to calculate them if they can
be absorbed into the constant part).
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I The objective of this study (Norton and Dunn, 1985;
Agresti, 2002) is to investigate whether there is a
relationship between snoring and heart disease.

I We have the following data based on 2484 subjects (the
snoring level is reported by spouses).

I Here, the snoring level (5 is the most severe) is the
predictor or explanatory variable.

I The outcome variable is binary (i.e., heart disease = 1, no
heart disease = 0).
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I We assume yi has a binomial distribution, and we model
the relationship between snoring and heart disease using
the logistic model.

I As before, we use a relatively broad prior for β

βj ∼ N (0, 1002) j = 0, 1

I The role of prior here is mainly to provide a reasonable
range for possible values of β (even if it is very broad).
This helps us to avoid pitfalls associated with maximum
likelihood estimates when the sample size is small or the
data is sparse.

I Also, in general, we might want to use different priors for
the intercept and coefficients.
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I The following graph shows the trace plots of 1000 posterior
samples after discarding the initial 500 samples
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I We can use the posterior samples to obtain the posterior
expectation of regression parameters as well as their 95%
interval

I As we can see, snoring is positively related to the increase
in probability of heart disease.

I We can also talk about what is the posterior tail
probability p(β1 < 0|y), and use it as a measure of our
confidence when we make comments such as “snoring
results in the increase risk of heart disease”.

I Since this tail probability is zero (alternatively, we notice
that 95% interval does not include 0), we believe the
observed effect is statistically significant.
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I As before, we use normal priors for β’s. But there is an
issue we need to address.

I The above representation of multinomial logistic model is
redundant since we only need K − 1 parameters (say,
µ2, . . . , µK). The first one would be determined based on
these K − 1 parameters since

∑K
k=1 µik = 1.

I Without this constraints, different set of parameter values
can give the same probability. For example,

p(yi = k|η + C) =
exp(ηik + C)∑′
k exp(ηik′ + C)

=
exp(ηik)∑′
k exp(ηik′)

= p(yi = k|η)
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I In the above example, while the values of η’s changed the
probabilities didn’t. Note that for the multinomial logistic
model, what really matters here is the difference between
β’s from one class to another.

I In statistics, when distinct parameter values give the same
model, we say the model is unidentifiable.

I In classical statistics, this is bad, and to avoid this issue for
multinomial logistic model, we could set one set of
parameters (usually either β1 or βK) to zero.

I We do not do this in the Bayesian statistics since it would
become difficult to set up symmetric priors based on β.

I Using the unidentifiable setting is totally fine with
prediction. When inference is needed, we can use the
posterior distribution of one of the β’s as the baseline and
subtract others from it to make it identifiable.
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I To show how we can set up an unidentifiable model and
still perform inference, we use the snoring dataset for the
first example (note that we can always use the multinomial
logistic model regardless of whether the outcome is binary
or multi-category).

I This time, β is a 2× 2 matrix. The second row, β11, β12 are
the snoring effects on Class 1 (no heart disease) and Class
2 (heart disease).

I As before, we use a very wide N (0, 1002) priors for βjk,
and use the slice sampler for simulating sample from the
posterior distribution of β one parameter at a time.
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I The first graph in the following figure shows the trace plots
of β11 and β12. The second graph shows the trace plot of
β12 − β11.
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I While the absolute values of these parameters (and
similarly the intercept parameters) do not converge to
specific values due to non-identifiability, the identifiable
parameters of the model, β12 − β11, as shown in the second
graph is converging with the posterior mean equal to 0.4 as
we obtained using a logistic regression model.

I Therefore, we can continue our inference based on the
identifiable parameters as we did before.
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