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I Now suppose we are interested in sampling from a
distribution π (e.g., the unnormalized posterior)

I Markov chain Monte Carlo (MCMC) is a method that
samples from a Markov chain whose stationary distribution
is the target distribution π. It does this by constructing an
appropriate transition probability for π

I MCMC, therefore, can be viewed as an inverse process of
Markov chains
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I The transition probability in MCMC resembles the
proposal distribution we used in previous Monte Carlo
methods.

I Instead of using a fixed proposal (as in importance
sampling and rejection sampling), MCMC algorithms
feature adaptive proposals

Figures adapted from Eric Xing (CMU)
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I Suppose that we are interested in sampling from a
distribution π, whose density we know up to a constant
P (x) ∝ π(x)

I We can construct a Markov chain with a transition
probability (i.e., proposal distribution) Q(x′|x) which is
symmetric; that is, Q(x′|x) = Q(x|x′)

I Example. A normal distribution with the mean at the
current state and fixed variance σ2 is symmetric since

exp

(
−(y − x)2

2σ2

)
= exp

(
−(x− y)2

2σ2

)
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In each iteration we do the following

I Draws a sample x′ from Q(x′|x), where x is the previous
sample

I Calculated the acceptance probability

a(x′|x) = min

(
1,
P (x′)

P (x)

)
Note that we only need to compute P (x′)

P (x) , the unknown
constant cancels out

I Accept the new sample with probability a(x′|x) or remain
at state x. The acceptance probability ensures that, after
sufficient many draws, our samples will come from the true
distribution π(x)
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Adapted from Andrieu, Freitas, Doucet, Jordan, 2003
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I How do we know that the chain is going to converge to π?

I Suppose the support of the proposal distribution is X (e.g.,
Gaussian distribution), then the Markov chain is
irreducible and aperiodic.

I We only need to verify the detailed balance condition

π(dx)p(x, dx′) = π(x)dx ·Q(x′|x)a(x′|x)dx′

= π(x)Q(x′|x) min

(
1,
π(x′)

π(x)

)
dxdx′

= Q(x′|x) min(π(x), π(x′))dxdx′

= Q(x|x′) min(π(x′), π(x))dxdx′

= π(x′)dx′ ·Q(x|x′) min

(
1,
π(x)

π(x′)

)
dx

= π(dx′)p(x′, dx)
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I It turned out that symmetric proposal distribution is not
necessary. Hastings (1970) later on generalized the above
algorithm using the following acceptance probability for
general Q(x′|x)

a(x′|x) = min

(
1,
P (x′)Q(x|x′)
P (x)Q(x′|x)

)
I Similarly, we can show that detailed balanced condition is

preserved
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I Under mild assumptions on the proposal distribution Q,
the algorithm is ergodic

I However, the choice of Q is important since it determines
the speed of convergence to π and the efficiency of sampling

I Usually, the proposal distribution depend on the current
state. But it can be independent of current state, which
leads to an independent MCMC sampler that is somewhat
like a rejection/importance sampling method

I Some examples of commonly used proposal distributions
I Q(x′|x) ∼ N (x, σ2)
I Q(x′|x) ∼ Uniform(x− δ, x+ δ)

I Finding a good proposal distribution is hard in general
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I Recall the univariate Gaussian model with known variance

yi ∼ N (θ, σ2)

p(y|θ, σ) =

n∏
i=1

1√
2πσ

exp

(
−(yi − θ)2

2σ2

)
I Note that there is a conjugate N (µ0, τ

2
0 ) prior for θ, and

the posterior has a close form normal distribution

I Now let’s pretend that we don’t know this exact posterior
distribution and use a Markov chain to sample from it.
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I We can of course write the posterior distribution up to a
constant

p(θ|y) ∝ exp

(
(θ − µ0)2

2τ2
0

) n∏
i=1

exp

(
−(yi − θ)2

2σ2

)
= P (θ)

I We use N (θ(i), 1), a normal distribution around our current
state, to propose the next step

I Starting from an initial point θ(0) and propose the next
step θ′ ∼ N (θ(0), 1), we either accept this value with
probability a(θ′|θ(0)) or reject and stay where we are

I We continue these steps for many iterations
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I As we can see, the posterior distribution we obtained using
the Metropolis algorithm is very similar to the exact
posterior
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I Recall the binomial model:

p(y|n, θ) =

(
n

y

)
θy(1− θ)n−y

I Assuming the conjugate prior Beta(α, β) for θ, we saw that
the posterior is Beta(α+ y, β + n− y).

I For the election example, we mentioned that out of 100
people surveyed, 39 said they are going to vote for A. We
used a conjugate Beta(1, 1) prior and obtained Beta(40, 62)
as the posterior distribution for θ.

I Now let’s not use the closed form of the posterior
distribution and use the Metropolis algorithm instead.
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I We first need to find the posterior distribution (up to a
constant).

I The prior distribution is of course uniform: p(θ) = 1.

I The likelihood is (ignore the irrelevant constant)

p(y|θ) ∝ θy(1− θ)n−y

where n = 100 and y = 39.

I Therefore, using the Bayes’ theorem, the posterior is

p(θ|y) ∝ p(θ)p(y|θ) ∝ θ39(1− θ)61 = P (θ)
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I Next, we need to choose a transition (i.e., proposal)
distribution.

I Let’s use Uniform(0, 1). This is of course symmetric.

I Now we start from x0 = 0.5 and repeat the following steps
I sample θ′ from Uniform(0, 1)
I calculate the acceptance probability

a(θ′|θ(i)) = min

(
1,

(θ′)39(1− θ′)61

(θ(i))39(1− θ(i))61

)
I Accept the proposed value with probability a(θ′|θ). For

this, we can sample u ∼ Uniform(0, 1) and set

θ(i+1) =

{
θ′ u < a(θ′|θ)
θ(i) otherwise
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Trace plot and posterior estimation
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I Recall the Beckham’s example. We modeled the number of
goals yi he scores in a game using a Poisson model

yi ∼ Poisson(θ)

I He scored 0 and 1 goals in the first two games respectively

I We used Gamma(1.4, 10) prior for θ, and because of
conjugacy, the posterior distribution also had a Gamma
distribution

θ|y ∼ Gamma(2.4, 12)

I Again, let’s ignore the closed form posterior and use
MCMC for sampling the posterior distribution
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I The prior is
p(θ) ∝ θ0.4 exp(−10θ)

I The likelihood is

p(y|θ) ∝ θy1+y2 exp(−2θ)

where y1 = 0 and y2 = 1

I Therefore, the posterior is proportional to

p(θ|y) ∝ θ0.4 exp(−10θ) · θy1+y2 exp(−2θ) = P (θ)
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I Symmetric proposal distributions such as

Uniform(θ(i) − δ, θ(i) + δ) or N (θ(i), σ2)

might not be efficient since they do not take the
non-negative support of the posterior into account.

I Here, we use a non-symmetric proposal distribution such as
Uniform(0, θ(i) + δ) and use the Metropolis-Hastings (MH)
algorithm instead

I We set δ = 1
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We start from θ0 = 1 and follow these steps in each iteration

I Sample θ′ from U(0, θ(i) + 1)

I Calculate the acceptance probability

a(θ′|θ(i)) = min

(
1,

P (θ′)Uniform(θ(i)|0, θ′ + 1)

P (θ(i))Uniform(θ′|0, θ(i) + 1)

)

I Sample u ∼ U(0, 1) and set

θ(i+1) =

{
θ′ u < a(θ′|θ(i))

θ(i) otherwise
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I What if the distribution is multidimensional, i.e.,
x = (x1, x2, . . . , xd)

I We can still use the Metropolis algorithm (or MH), with a
multivariate proposal distribution, i.e., we now propose
x′ = (x′1, x

′
2, . . . , x

′
d)

I For example, we can use a multivariate normal Nd(x, σ2I),
or a d-dimensional uniform distribution around the current
state
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I Here we construct a banana-shaped posterior distribution
as follows

y|θ ∼ N (θ1 + θ2
2, σ

2
y), σy = 2

We generate data yi ∼ N (1, σ2
y)

I We use a bivariate normal prior for θ

θ = (θ1, θ2) ∼ N (0, I)

I The posterior is

p(θ|y) ∝ exp

(
−θ

2
1 + θ2

2

2

)
· exp

(
−
∑

i(yi − θ1 − θ2
2)2

2σ2
y

)
I We use the Metropolis algorithm to sample from posterior,

with a bivariate normal proposal distribution such as
N (θ(i), (0.15)2I)
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The first few samples from the posterior distribution of
θ = (θ1, θ2), using a bivariate normal proposal
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Posterior samples for θ = (θ1, θ2)
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Trace plot of posterior samples for θ = (θ1, θ2)
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I Sometimes, it is easier to decompose the parameter space
into several components, and use the Metropolis (or MH)
algorithm for one component at a time

I At iteration i, given the current state (x
(i)
1 , . . . , x

(i)
d ), we do

the following for all components k = 1, 2, . . . , d
I Sample x′k from the univariate proposal distribution

Q(x′k| . . . , x
(i+1)
k−1 , x

(i)
k , . . .)

I Accept this new value and set x
(i+1)
k = x′k with probability

a(x′k| . . . , x
(i+1)
k−1 , x

(i)
k , . . .)) = min

(
1,
P (. . . , x

(i+1)
k−1 , x′k, . . .)

P (. . . , x
(i+1)
k−1 , x

(i)
k , . . .)

)

or reject it and set x
(i+1)
k = x

(i)
k
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I Note that in general, we can decompose the space of
random variable into blocks of components

I Also, we can update the components sequentially or
randomly

I As long as each transition probability individually leaves
the target distribution invariant, their sequence would leave
the target distribution invariant

I In Bayesian models, this is especially useful if it is easier
and computationally less intensive to evaluate the posterior
distribution when one subset of parameters change at a
time
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I In the example of banana-shaped distribution, we can
sample θ1 and θ2 one at a time

I The first few samples from the posterior distribution of
θ = (θ1, θ2), using a univariate normal proposal sequentially
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I As the dimensionality of the parameter space increases, it
becomes difficult to find an appropriate proposal
distributions (e.g., with appropriate step size) for the
Metropolis (or MH) algorithm

I If we are lucky (in some situations we are!), the conditional
distribution of one component, xj , given all other
components, x−j is tractable and has a close form so that
we can sample from it directly

I If that’s the case, we can sample from each component one
at a time using their corresponding conditional
distributions P (xj |x−j)
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I This is known as the Gibbs sampler (GS) or “heat bath”
(Geman and Geman, 1984)

I Note that in Bayesian analysis, we are mainly interested in
sampling from p(θ|y)

I Therefore, we use the Gibbs sampler when P (θj |y, θ−j) has
a closed form, e.g., there is a conditional conjugacy

I One example is the univariate normal model. As we will
see later, given σ, the posterior P (µ|y, σ2) has a closed
form, and given µ, the posterior distribution of P (σ2|µ, y)
also has a closed form
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I The Gibbs sampler works as follows

I Initialize starting value for x1, x2, . . . , xd
I At each iteration, pick an ordering of the d variables (can

be sequential or random)

1. Sample x ∼ P (xi|x1, . . . , xi−1, xi+1, . . . , xd), i.e., the
conditional distribution of xi given the current values of all
other variables

2. Update xi ← x

I When we update xi, we immediately use it new value for
sampling other variables xj
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I Note that in GS, we are not proposing anymore, we are
directly sampling, which can be viewed as a proposal that
will always be accepted

I This way, the Gibbs sampler can be viewed as a special
case of MH, whose proposal is

Q(x′i, x−i|xi, x−i) = P (x′i|x−i)

I Applying MH with this proposal, we obtain

a(x′i, x−i|xi, x−i) = min

(
1,
P (x′i, x−i)Q(xi, x−i|x′i, x−i)
P (xi, x−i)Q(x′i, x−i|xi, x−i)

)
= min

(
1,
P (x′i, x−i)P (xi|x−i)
P (xi, x−i)P (x′i|x−i)

)
= min

(
1,
P (x′i, x−i)P (xi, x−i)

P (xi, x−i)P (x′i, x−i)

)
=1



Examples: Univariate Normal Model 34/38

I We can now use the Gibbs sampler to simulate samples
from the posterior distribution of the parameters of a
univariate normal y ∼ N (µ, σ2) model, with prior

µ ∼ N (µ0, τ
2
0 ), σ2 ∼ Inv-χ2(ν0, σ

2
0)

I Given (σ(i))2 at the ith iteration, we sample µ(i+1) from

µ(i+1) ∼ N

( µ0
τ20

+ nȳ
(σ(i))2

1
τ20

+ n
(σ(i))2

,
1

1
τ20

+ n
(σ(i))2

)

I Given µ(i+1), we sample a new σ2 from

(σ(i+1))2 ∼ Inv-χ2(ν0+n,
ν0σ

2
0 + νn

ν0 + n
), ν =

1

n

n∑
j=1

(yj−µ(i+1))2
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I The following graphs show the trace plots of the posterior
samples (for both µ and σ)
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Gibbs sampling algorithms have been widely used in
probabilistic graphical models

I Conditional distributions are fairly easy to derive for many
graphical models (e.g., mixture models, Latent Dirichlet
allocation)

I Have reasonable computation and memory requirements,
only needs to sample one random variable at a time

I Can be Rao-Blackwellized (integrate out some random
variable) to decrease the sampling variance. This is called
collapsed Gibbs sampling

I We will see examples later.



Combining Metropolis with Gibbs 37/38

I For more complex models, we might only have conditional
conjugacy for one part of the parameters

I In such situations, we can combine the Gibbs sampler with
the Metropolis method

I That is, we update the components with conditional
conjugacy using Gibbs sampler and for the rest parameters,
we use the Metropolis (or MH)
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