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Monty Hall Problem 2/47

The problem is based on a TV game show hosted by Monty
Hall. Suppose now your are on this show, and you are given the
choice of three doors: Behind one door is a car; behind the
others, goats. You pick a door, say No. 1, and the host, who
knows what’s behind the doors, opens another door, say No. 3,
which has a goat. He then says to you, ”Do you want to pick
door No. 2?” Is it to your advantage to switch your choice?
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I At the beginning, the car can be behind any of the three
doors with equal probability. That is

p(D1) = p(D2) = p(D3) =
1

3

I Now you pick door No. 1, and Monty open door No. 3.
The conditional probability of openning, OD3, given the
three possibilities (i.e., D1, D2 and D3) are

p(OD3|D1) =
1

2
p(OD3|D2) = 1

p(OD3|D3) = 0
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I Now using the law of total probability we can find the
marginal probability for opening door No. 3

p(OD3) =
1

2
× 1

3
+ 1× 1

3
+ 0× 1

3
=

1

2

I Using Bayes’ theorem, we have

P (D2|OD3) =
p(D2)p(OD3|D2)

p(OD3)
=

1
3 × 1

1
2

=
2

3

p(D1|OD3) =
p(D1)p(OD3|D1)

p(OD3)
=

1
3 ×

1
2

1
2

=
1

3

I Therefore, probability of winning doubles if you switch.
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I Consider a set of observations x = (x1, . . . , xn). In
constructing the joint distribution of these observations, we
might believe that the indices are uninformative.

I For example, we toss an old-fashioned thumbtack on a soft
surface and keep track of whether the sharp point is up or
down. After n tosses, we believe the joint distribution
remains the same regardless of which order we consider.

I In this experiment, we do not expect those tosses close
together in time to be more similar to each other compared
to other tosses.

I We also believe that the above comments are true for any
subsets of tosses. That is, if n = 100, (x4, x17) has the same
joint distribution as (x81, x22), and (x30, x16, x92) has the
same joint distribution of (x18, x10, x99) and so forth



Exchangeability 6/47

I Such symmetry or similarity could be expressed as

p(x1, . . . , xn) = p(xπ1 , . . . , xπn)

where π represent all permutations on {1, 2, . . . , n}.
I We call a sequence to be exchangeable if this property holds

for any finite subset of it.

I For a sequence of coin tossing, let’s denote head as 1 and
tail as 0. Then exchangeability means the joint probability
of any fixed set of 0’s and 1’s does not change when we
permute them.

I For example, if n = 3, then p(100) = p(010) = p(001), i.e.,
there is nothing special about the location of 1. Also
p(110) = p(101) = p(011).
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I We should be careful about our judgement of
exchangeability.

I Consider the age of students in this class. Assume that all
we know about students is their names.

I We might regard their age as exchangeable, which means
students’ names are not informative in defining the joint
distribution.

I However, what if we also know whether a student is in a
master’s program or a PhD program?

I We know that in general, master students tend to be
younger.

I Therefore, it would be more appropriate to assume
exchangeability only within each group (i.e., master’s and
PhD).
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I De Finetti’s Theorem (1930s) A sequence of random
variables (x1, x2, . . .) is infinitely exchangeable iff, for all n,

p(x1, x2, . . . , xn) =

∫ n∏
i=1

p(xi|θ)P (dθ) (1)

for some measure P on θ.

I We can replace P (dθ) with p(θ)dθ if the distribution on θ
has a density.

I Clearly, the produce
∏n
i=1 p(xi|θ) is permutation invariant.

Therefore, any sequence distribution that can be written as
in (1) for all n must be exchangeable.
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By De Finetti’s theorem, if we have exchangeable data

I There must exist a parameter θ.

I There must exist a likelihood p(x|θ).
I There must exist a distribution P on θ.

I The above quantities must exist so as to render the data
conditionally independent.

This provide another evidence for the Bayesian formulation!



Bayesian Inference 10/47

I To perform Bayesian inference, we still to specify the
model p(x|θ) for the observed data and the prior p(θ) for
the parameter of the model.

I The next step is to make probabilistic conclusions
regarding the unobserved quantity θ given the observed
data x, which is called posterior distribution.

p(θ|x) =
p(x|θ)p(θ)
p(x)

∝ p(x|θ)p(θ)

I This simple formula is the essential part of Bayesian
analysis. It is used not only for expressing updated belief
about model parameters, but also for making decisions
(e.g., accepting or rejecting a hypothesis) and predictions.
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I Next, we will discuss some simple models commonly used
for typical random variables.

I These models are based on our assumption for the
underlying mechanism that generates the observed data.

I The focus in this model is on one single parameter, which
represents the population mean.

I If there are other parameters in the model, we would
regard them as nuisance parameters.

I Later, we will discuss multi-parameter models.
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I Consider a sequence of independent binary random
variables, x1, x2, . . ., such as “head/tails”,
“cancer/non-cancer”, or “win/loss”, such that xi ∈ {0, 1}.

I Denote the probability of observing 1 as θ, then

xi|θ ∼ Bernoulli(θ), p(xi|θ) = θxi(1− θ)1−xi

I If x1, x2, . . . , xn are iid (hence exchangeable) binary
random variables with Bernoulli distribution, the sum
y =

∑
i xi (i.e., number of 1’s in the sequence) has a

Binomial(n, θ) distribution

p(y|n, θ) =

(
n

y

)
θy(1− θ)n−y
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I Assuming the prior p(θ), the marginal distribution of y can
be obtained as

p(y) =

∫ 1

0

(
n

y

)
θy(1− θ)n−yp(θ)dθ

I Let’s say we are quite ignorant about possible value of θ.
That is to say, we think θ is uniformly distributed in [0, 1],
i.e., p(θ) = 1, 0 ≤ θ ≤ 1.

I Then we have

p(y) =

∫ 1

0

(
n

y

)
θy(1− θ)n−ydθ =

n!

y!(n− y)!
Beta(y + 1, n− y + 1)

=
n!

y!(n− y)!
· y!(n− y)!

(n+ 1)!
=

1

n+ 1
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I The posterior then can be evaluated easily

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
(n+ 1)!

y!(n− y)!
θy(1− θ)n−y

I This is a Beta(y + 1, n− y + 1) distribution with
expectation

E(θ|y) =
y + 1

n+ 2

I Note that the posterior mean is a compromise between the
prior mean and the sample proportion. As the sample size
increases, the effect of prior diminishes.
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I Sometimes our objective is to use the posterior to predict
future observations.

I That is, after observing some data, y =
∑

i xi, we want to
predict the next observation, xn+1, which we denote as x̃.

I We can sum (or integrate) over posterior distribution of θ,
i.e., p(θ|y), to form the posterior predictive distribution

p(x̃|y) =

∫ 1

0
p(x̃|θ, y)p(θ|y)dθ

Since x̃ is independent of y given θ, we have

p(x̃|y) =

∫ 1

0
p(x̃|θ)p(θ|y)dθ
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I For the above binomial model, since p(x = 1|θ) = θ, the
posterior pr predictive distribution can be obtained as

p(x̃ = 1|y) =

∫ 1

0
θp(θ|y)dθ

I This is just the posterior mean of θ, which we computed
before

p(x̃ = 1|y) =
y + 1

n+ 2



Predicting The Election Result 17/47

I We want to predict which one of two candidates, A or B,
will win the election.

I Let’s denote the probability that A wins as θ, and we
assume a priori the probability of winning for candidate A
has uniform distribution.

I We ask 10 people which candidate they would choose in
this election. Of 10 people surveyed, 3 people said they are
going to vote for A.

I Our updated belief in A’s winning has now a Beta(4, 8)
distribution.

I The posterior expectation of A’s winning is 4
12 ≈ 0.33,

which is also the probability that the next person we
survey votes for A.

I Note that this is almost the same as the maximum
likelihood estimation 3

10 = 0.3
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I In the above example, the derivation of posterior
distribution was quite simple since it had a closed form.

I This was due to our choice of prior, i.e., uniform
distribution. Note that uniform prior on [0, 1] is in fact
Beta(1, 1) distribution.

I Therefore, for the above binomial model, both prior and
posterior are Beta distributions.

I This is called “conjugacy” and the prior is called a
“conjugate” prior.

I Conjugacy is informally defined as a situation where the
prior distribution p(θ) and the corresponding posterior
distribution, p(θ|y) belong to the same distribution family.

I Using conjugate priors makes sampling and Bayesian
inference much easier compared to non-conjugate priors.
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I Many widely used distributions, e.g., Normal, Bernoulli,
Poisson, belong to a large class of distributions, called
exponential family, that takes the following form

p(yi|θ) = h(yi)g(θ) exp(φ(θ)T s(yi))

I φ(θ) is called the natural parameter of the family

I The joint distribution for a set of conditionally independent
observations, y = (y1, y2, . . . , yn) is

p(y|θ) =
∏
i

h(yi)g(θ)n exp

(
φ(θ)T

∑
i

s(yi)

)

I t(y) =
∑

i s(yi) is a sufficient statistic for θ.
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I For an exponential family, we have an natural choice of
conjugate priors

p(θ) ∝ g(θ)η exp
(
φ(θ)T ν

)
I Easy to check the posterior would have a similar form

p(θ|y) ∝ g(θ)η+n exp
(
φ(θ)T (ν + t(y))

)
I In this case, p(θ) is a conjugate prior.
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I Let’s look at the binomial model again:

p(y|θ, n) =

(
n

y

)
θy(1− θ)n−y

=

(
n

y

)
exp

[
y log

(
θ

1− θ

)
+ n log(1− θ)

]
=

(
n

y

)
(1− θ)n exp

[
y log

(
θ

1− θ

)]
I Therefore,

g(θ) = 1− θ, φ(θ) = log

(
θ

1− θ

)
= logit(θ)
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I Recall that a conjugate prior is proportional to

p(θ) ∝ g(θ)η exp
(
φ(θ)T ν

)
I Therefore, the conjugate prior for the Binomial model has

the following form:

p(θ) ∝ θα−1(1− θ)β−1

I This is a Beta(α, β) distribution.

I We can interpret this prior as observing α− 1 prior success
and β − 1 prior failure. That is, the prior acts as additional
data.

I And the posterior distribution is Beta(α+ y, β + n− y).

I Note that the uniform distribution we used before is in fact
a special case of Beta distribution where α = β = 1.
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I As before, assume that we have surveyed 10 people and 3
of them are going to vote for candidate A.

I This time, however, we know that candidate A belongs to
the party that in the previous elections won about 55% of
votes.

I Instead of a uniform prior, we could use a more informative
Beta prior which reflects such prior information.

I For example, we could choose a Beta prior whose mean is
α

α+β = 0.55, and it is broad enough to reflect the extent of
our uncertainty.

I We should always use a reasonably broad prior.
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I We choose a p(θ) = Beta(5.5, 4.5) as our prior

I Plot you prior distribution or generate samples from it to
make sure it is a good representation of your opinion.

I The posterior distribution now is Beta(8.5, 11.5). So while
the MLE is 0.3, the posterior expectation now is 0.425,
which is a compromise between the observed data and the
prior.
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I Now assume that we have obtained additional bugdet to
survey 20 more people. The result shows that 12 out of 20
are going to vote for candidate A.

I It make sense to update our opinion based on this new
information. It is also reasonable not to ignore the previous
data.

I However, we do not need to start our analysis from the
beginning. We can use the previous posterior distribution,
p(θ) = Beta(8.5, 11.5), as our new prior and obtain a new
posterior based on the more recent data.

I Our new posterior is therefore p(θ|y) = Beta(20.5, 19.5).

I The posterior expectation 20.5
20.5+19.5 = 0.51 and the MLE

15/30 = 0.5 are now getting closer as the amount of data
increases.
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I Poisson model is another member of exponential family
and is commonly used for count data.

I Assume we have observed y = (y1, y2, . . . , yn):

p(y|θ) =
∏
i

θyi exp(−θ)
yi!

∝ exp(−nθ) exp

(
log θ

∑
i

yi

)

I The conjugate prior would have the following form:

p(θ) ∝ (exp(−θ))η exp(ν log θ) ∝ exp(−ηθ)θν

I Using p(θ) ∝ exp(−βθ)θα−1, which is a Gamma(α, β)
distribution, as our prior, we have the following posterior

θ|y ∼ Gamma(α+
∑
i

yi, β + n)
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I When David Beckham joined LA Galaxy, he scored one
goal in his first two MLS games.

I Assume that after the manager of LA Galaxy wanted to
predict the number of goals Beckham would score in the
remaining games.

I We model the number of goals, yi, he scores in a game
using a Poisson model with parameter θ.

I The maximum likelihood estimate is θ̂ = 0.5.

I Now let’s use a Gamma(α, β) prior for θ.

I Since we don’t have a clue for α and β, we should use a
noninformative prior that reflects our lack of information.

I Alternatively, we might want to use Beckham’s history in
Real Madrid to build a prior opinion.
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I When in Madrid, Beckham scored 3 goals in 22 games (i.e.,
3/22 ≈ 0.14 on average) during 06-07 season.

I We could choose a Gamma prior with mean around 0.14,
for example, making sure it is broad enough to reflect our
uncertainty.

I Be careful when working with Gamma distribution since
there are two different ways of parameterizing it. Here, we
use the form

f(x|α, β) =
βα

Γ(a)
xα−1 exp(−βx).

I The mean of Gamma(α, β) is α/β.

I For our example, we could use the conjugate
Gamma(1.4, 10) prior with mean 1.4/10 = 0.14.
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I Since Gamma is a conjugate prior for the parameter of
Poisson model, the posterior also has a Gamma
distribution, which in this case is a Gamma(1.4 + 1, 10 + 2)
distribution.

I The expected number of goals is therefore 2.4/12 = 0.2
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I Posterior is again a compromise between the prior and the
data (likelihood).

I In this example, as shown in the graph, the posterior is
more similar to the prior than the likelihood.

I This is due to the fact that the amount of data is small.

I As the amount of data increases the influence of prior on
posterior decreases while the effect of likelihood increases.

I In 2008-2009, Beckham played 25 games and scored 5
goals. This is a 0.2 average, which is much closer to our
estimate compared to the MLE, which is 0.5
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I The normal distribution is also a member of exponential
families.

I We first consider a situation where there is only one
observation and the variance is known.

y ∼ N (θ, σ2), p(y|θ, σ) =
1√
2πσ

exp

(
−(y − θ)2

2σ2

)
I So the general form of a conjugate prior is
p(θ) ∝ exp(aθ2 + bθ), which can be parameterized as

p(θ) ∝ exp

(
−(θ − µ0)2

2τ2
0

)
a N (µ0, σ

2
0) distribution.
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I As a result, the posterior distribution would be

p(θ|σ, y) ∝ exp

(
−(y − θ)2

2σ2
− (θ − µ0)2

2τ2
0

)
I When you complete the square, the posterior would also

become a normal distribution:

p(θ|σ, y) ∝ exp

(
−(θ − µ1)2

2τ2
1

)
which is a N (µ1, σ

2
1) distribution with

µ1 =

µ0
τ20

+ y
σ2

1
τ20

+ 1
σ2

,
1

τ2
1

=
1

τ2
0

+
1

σ2
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I Similarly, for n observations, we update the likelihood with
ȳ and the posterior is a N (µn, σ

2
n) distribution with

µn =

µ0
τ20

+ nȳ
σ2

1
τ20

+ n
σ2

,
1

τ2
n

=
1

τ2
0

+
n

σ2

I Let’s assume that the height (in inch) of students in this
class follows a normal distribution N (θ, 16). We use a
θ ∼ N (65, 9) prior. We measure the height of three
students: y1 = 72, y2 = 75, y3 = 70.

I The posterior is θ|y ∼ N (69.6, 3.4).

I The role of prior is substantial here due to the small
sample size. The prior modifies the likelihood based
estimate (i.e., ȳ = 72.3), which could have been misleading
since the data happened to be from tall people.
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Again, the posterior distribution could be interpreted as a
compromise between the prior and the likelihood
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I In the above example, what would be our prediction for the
height of next person we observe?

I Denote our prediction as ỹ, and the corresponding
distribution as p(ỹ|y), i.e., the posterior predictive
probability. As before,

p(ỹ|y) =

∫
p(ỹ|θ)p(θ|y)dθ

I By integrating out θ, the conditional distribution of ỹ given
y is normal with the following mean and variance:

E(ỹ|y) = E(E(ỹ|θ, y)|y) = E(θ|y) = µn

Var(ỹ|y) = E(Var(ỹ|θ, y)|y) + Var(E(ỹ|θ, y)|y)

= E(σ2|y) + Var(θ|y) = σ2 + τ2
n
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I We could use µn, the posterior expectation of θ, as our
single point estimate for ỹ.

I The variation around this estimate (i.e., our uncertainty)
comes from two different sources: σ2, the sampling
variation (which is assumed fixed here) of data according
to the model, and τ2

n, the posterior variation of the model
parameter θ, given the observed data.

I In the height example, our guess for the height of the fourth
student can be expressed by a N (69.6, 19.4) distribution.
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I For situations where the mean is fixed and the variance, σ2,
is the parameter of interest, we use the following scaled
inverse-χ2 prior:

σ2 ∼ Inv-χ2(ν0, σ
2
0), p(σ2) ∝ 1

σ2+ν0
exp

(
−ν0σ

2
0

2σ2

)
where ν0 is the degree of freedom and σ0 is the scale
parameter.

I The posterior would also be scaled inverse-χ2 with ν0 + n

degrees of freedom and scale equal to
ν0σ2

0+
∑

i=1 n(yi−µ)2

ν0+n .

I Recall that scaled inverse-χ2 can be reviewed as Gamma
distribution with a different parameterization (for precision
γ2 = 1/σ2). Therefore, we can also use a Gamma prior as
conjugate prior.
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I When both µ and σ2 are unknown, the only way to make
the priors conjugate is to make the prior for µ dependent
on σ2 as follows:

µ|σ2 ∼ N (µ0, σ
2/k0)

σ2 ∼ Inv-χ2(ν0, σ
2
0)

I In general, I do not recommend this prior

I As we will see later, we don’t have to specify our prior this
way.
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I This is a multiparameter generalization of binomial
distribution

I For example, in the election problem, we might have more
than two candidates.

I If y has a multinomial distribution with J groups, the
sampling distribution would have the following form

p(y|θ) ∝
J∏
j=1

θ
yj
j

where
∑

j θj = 1 and θj ≥ 0, j = 1, . . . , J .
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I The conjugate prior for this model is the Dirichlet
distribution

p(θ|α) ∝
J∏
j=1

θ
αj−1
j , θj ≥ 0,

J∑
j=1

θj = 1, αj > 0

which is a multivariate generalization of the Beta
distribution

I For this distribution, E(θj) = αj/
∑′

j α
′
j .

I A special case is the symmetric Dirichlet distribution,
where αj = α, j = 1, . . . , J . This is useful when no prior
preference is available. The scalar parameter α is called the
concentration parameter.
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I The posterior is also a Dirichlet distribution

p(θ|α, y) ∝
J∏
j=1

θ
yj+αj−1
j

I Consider the election example. Let’s assume another
candidate, C, enters the race and a new poll shows that
out of 100 people surveyed 24 people vote for A, 45 for B,
and 31 for C.

I Let’s denote the probability of winning by θj , where
j ∈ {A,B,C} ≡ {1, 2, 3}. Assume a symmetric Dirichlet
prior with α = 1.

I The posterior distribution of θ has a Dirichlet(25, 46, 32).
The probability of winning (i.e., E(θj)) for candidate
A,B,C becomes 25/103, 46/103, and 32/103 respectively.
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I For multivariate normal distribution with known
covariance, Σ, we assume

x ∼ N (µ,Σ)

µ ∼ N (µ0,Σ0)

The posterior distribution of µ given n observations is also
a multivariate normal distribution,

µ|x ∼ N (µn,Σn)

where

µn = (Σ−1
0 + nΣ−1)−1(Σ−1

0 µ0 + nΣ−1x̄)

Σn = (Σ−1
0 + nΣ−1)−1
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I For multivariate normal distribution with known mean, µ,
we assume

x ∼ N (µ,Σ)

Σ ∼ Inv-Wishart(ν0,Λ0)

I The posterior distribution of Σ given n observations is also
a multivariate normal distribution,

Σ|x ∼ Inv-Wishart(νn,Λn)

where

νn = ν0 + n

Λn = Λ0 +
∑
i

(xi − µ)(xi − µ)T
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