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General Information 2/41

I Class times:
I Odd Tuesday 1:00-2:50pm, Friday 3:10-5:00pm
I Science Classroom Building, Room 407

I Instructor:
I Cheng Zhang: chengzhang@math.pku.edu.cn

I Teaching assistants:
I Weijian Luo: 2001110057@stu.pku.edu.cn

I Tentative office hours:
I 1279 Science Building No.1
I Thursday 3:00-5:00pm or by appointment

I Website:
https://zcrabbit.github.io/courses/btc-s21.html

chengzhang@math.pku.edu.cn
2001110057@stu.pku.edu.cn
https://zcrabbit.github.io/courses/btc-s21.html


Bayesian Statistics 3/41

I A branch of statistical sciences focusing on Bayesian
approaches, an alternative to frequentist approaches.

I The focus lies on modern Bayesian statistical methods and
theory, and various statistical models with Bayesian
formulation.

I With the rise of modern computational power, Bayesian
approaches have been developing rapidly due to the ease of
handling complicated models and the ability of providing
uncertainty quantification.



Goals 4/41

I Learn how to formulate a scientific question by
constructing a Bayesian model and perform Bayesian
statistical inference to answer that question.

I Develop a deeper understanding of the mathematical
theory of Bayesian statistical methods and modeling.

I Learn several computational techniques, and use them for
Bayesian analysis of real data using a modern
programming language (e.g., python).



Textbook 5/41

Download it here:
http://www.stat.columbia.

edu/~gelman/book/

Other interesting references:

I Liu, J. (2001). Monte Carlo
Strategies in Scientific
Computing, Springer-Verlag.

I Lange, K. (2002). Numerical
Analysis for Statisticians,
Springer-Verlag, 2nd Edition.

I Christian, P. R. (2004). The
Bayesian Choice, Springer.

http://www.stat.columbia.edu/~gelman/book/
http://www.stat.columbia.edu/~gelman/book/


Tentative Topics 6/41

I Approximate Bayesian Inference Methods
I Sequential Monte Carlo
I Markov chain Monte Carlo
I Variational Inference
I Scalable Approaches

I Bayesian Theory
I Decision Theory
I Convergence Analysis of Bayesian Inference Methods

I Bayesian Models
I Regression and Classification Models
I Hierarchical Models
I Non-parametric Models



Prerequisites 7/41

Familiar with at least one programming language (with python
preferred!).

I All class assignments will be in python (and use numpy).

I You can find a good Python tutorial at

http://www.scipy-lectures.org/

You may find a shorter python+numpy tutorial useful at

http://cs231n.github.io/python-numpy-tutorial/

Familiar with the following subjects

I Probability and Statistical Inference

I Stochastic Processes

http://www.scipy-lectures.org/
http://cs231n.github.io/python-numpy-tutorial/


Grading Policy 8/41

I 4 Problem Sets: 4× 15% = 60%

I Final Course Project: 40%
I up to 4 people for each team
I Teams should be formed by the end of week 4
I Midterm proposal: 5%
I Oral presentation: 10%
I Final write-up: 25%

I Late policy
I 7 free late days, use them in your ways
I Afterward, 25% off per late day
I Not accepted after 3 late days per PS
I Does not apply to Final Course Project

I Collaboration policy
I Finish your work independently, verbal discussion allowed



Final Project 9/41

I Structure your project exploration around a general
problem type, theory, algorithm, or data set, but should
explore around your problem, testing thoroughly or
comparing to alternatives.

I Present a project proposal that briefly describe your teams’
project concept and goals in one slide in class at midterm.

I There will be in class project presentation at the end of the
term. Not presenting your projects will be taken as
voluntarily giving up the opportunity for the final
write-ups.

I Turn in a write-up (< 10 pages) describing your project
and its outcomes, similar to a research-level publication.



Today’s Agenda 10/41

I Why Bayesian?

I Basic concepts in Bayesian Statistics



The Role of Statistics in Science 11/41

I Statistical methods are mainly inspired by applied scientific
problems.

I The overall goal of statistical analysis is to provide a robust
framework for designing scientific studies, collecting
empirical evidence, and analyzing the data, in order to
understand unknown phenomena, answer scientific
questions, and make decisions.

I To this end, we rely on the observed data as well as our
domain knowledge.



Domain Knowledge 12/41

I Our domain knowledge, which we refer to as prior
information, is mainly based on previous empirical
evidence.

I For example, if we are interested in the average normal
body temperature, we would of course measure body
temperature of a sample of subjects from the population,
but we also know, based on previous data, that this
average is a number close to 37◦C.

I In this case, our prior knowledge asserts that values around
37 are more plausible compared to values around 34 or 40.



Objective vs. Subjective 13/41

I We could of course attempt to minimize our reliance on
prior information (e.g., use weakly informative prior).

I Most frequentist methods follow this principle and use the
domain knowledge to decide which characteristics of the
population are relevant to our scientific problem (e.g., we
might not include height as a risk factor for cancer), but
avoid using priors when making inference.

I Note that this should not give us the illusion that the
frequentist methods are entirely objective.



Bayesian Statistics 14/41

I Bayesian methods on the other hand provide a principled
framework that to incorporate prior knowledge in the
process of making inference.

I Bayes’ Theorem (Thomas Bayes)

p(θ|D) =
p(D|θ)p(θ)
p(D)

∝ p(D|θ)p(θ)

I p(D|θ) is the model probability function, also known as the
likelihood function when viewed as a funciton of θ.

I p(θ) is the prior
I p(D) is the normalizing constant, also known as the model

evidence.

I This can be viewed as an inverse probability formula.



Bayesian Statistics: Concept vs Practice 15/41

I If the prior is in fact informative, this should lead to more
accurate inference and better decisions. Also, the way we
incorporate our prior knowledge in the analysis is explicit
(e.g., p(θ))

I The counterargument is that this makes our analysis more
prone to mistakes.

I While the underlying concept for Bayesian statistics is
quite simple, implementing Bayesian methods might be
difficult compared to their frequentist counterparts, due to
integration of many parameters.



Likelihood-based Inference 16/41

I Recall that we define the underlying mechanism that
generates data, D, using a probability model p(D|θ), which
depends on the unknown parameter of interest, θ.

I Frequentist method typically use this probability for
inference

I To estimate the model parameter, we can find θ that
maximizes the probability of the observed data.

θ̂MLE = arg max
θ

p(D|θ) = arg max
θ

log p(D|θ)

Often, the log-likelihood function is denoted as L(θ), and

θ̂MLE = arg max
θ

L(θ)

This is known as the Maximum likelihood estimate (MLE).



Score Function and Fisher Information 17/41

I The gradient of L with respect to θ is called the score

s(θ) =
∂L

∂θ

The expected value of the score is zero: E(s) = 0.

I The variance of the score is known as Fisher information

I(θ) = E(ssT )

Under mild assumptions (e.g., exponential families),

I(θ) = −E
(

∂2L

∂θ∂θT

)
Fisher information is a measure of the expected curvature
of the Log-likelihood function.



Properties of Maximum Likelihood Estimate 18/41

I Consistency. Under weak regularity condition, θ̂MLE is
consistent: θ̂MLE → θ0 in probability as n→∞, where θ0
is the “true” parameter

I Asymptotical Normality.

θ̂MLE − θ0 → N (0, I−1(θ0))

See Rao 1973 for more details.

I Efficiency. I−1(θ0) is the minimum variance that can be
achieved by any unbiased estimator, which is known as
Cramér-Rao Lower Bound.



Cramér-Rao Lower Bound 19/41

I For any unbiased estimator θ̂ of θ0 based on independent
observations following the true distribution, the variance of
the estimator is bounded by the reciprocal of the Fisher
information

Var(θ̂) ≥ 1

I(θ0)

I Sketch of proof: Consider a general estimator T = t(X)
with E(T ) = ψ(θ0). Let s be the score function,

Cov(T, s) = E(Ts) = ψ′(θ0)

Therefore,

Var(T ) ≥ [ψ′(θ0)]
2

Var(s)
=

[ψ′(θ0)]
2

I(θ0)



Example: Poisson Distribution 20/41

L(θ; y1, . . . , yn) =

n∑
i=1

yi log θ − nθ −
n∑
i=1

log yi!

s(θ) =

∑n
i=1 yi
θ

− n, I(θ) =
n

θ

θ̂MLE = arg max
θ

n∑
i=1

yi log θ − nθ =

∑n
i=1 yi
n

By the Law of large numbers

θ̂MLE
p−→ θ0

By central limit theorem

θ̂MLE − θ0
d−→ N

(
0,
θ0
n

)



Likelihood Principle 21/41

I We can also use the likelihood funciton to device standard
tests (Wald test, score test, and likelihood ratio test) to
perform hypothesis testing.

I Strong Likelihood Principle: The relevant information
in any inference about θ after D is observed is contained
entirely in the likelihood function.

I In other words, if the corresponding likelihood function for
two observed samples x, y are proportional,

f1(θ, x) ∝ f2(θ, y)

then inference for θ should be the same whether we observe
x or y.



Violation of The Strong Likelihood Principal 22/41

I The following example is from David MacKay’s book.

I A scientist has just received a grant to examine whether a
specific coin is fair (i.e., p(H) = p(T ) = 0.5) or not.

I He sets up a lab and starts tossing the coin. Of course,
because of his limited budget, he can only toss the coin a
finite number of times. Suppose he tosses the coin 12
times, of which only 3 are heads.

I He hires a frequentist statistician and ask him to estimate
the p-value hoping that the result could be published in
one of the journals that only publish if the p-value is less
than 0.05.

I The statistician says: “you tossed the coin 12 times and
you got 3 heads. The one-sided p-value is 0.07”.



Violation of The Strong Likelihood Principal 23/41

I The scientist says: “Well, it wasn’t exactly like that... I
actually repeat the coin tossing experiment until I got 3
heads and then I stopped”.

I The statistician say: “In that case, your p-value is 0.03”.

I Note that in the first scenario, we use a binomial model,
and in the second scenario, we use a negative-binomial
model with the following likelihood functions respectively

f1(θ, x) =

(
n

x

)
θx(1−θ)n−x, f2(θ, x) =

(
n− 1

x− 1

)
θx(1−θ)n−x

which are proportional.

I We’ll see the answer by a Bayesian statistician later.



Statistical Decision Theory 24/41

I In statistical decision theory, we need more than just
probability: we need a measure of loss or gain for each
possible outcome, i.e., a loss function

I A loss function `(θ, δ(X)) is a function that assigns to each
possible outcome of a decision δ(X) a number that
represents the cost and the amount of regret (e.g., loss of
profit) we endure when that outcome occurs.

I The loss function determines the penalty for predicting
δ(X) if θ is the true parameter. E.g., 0-1 loss in the
discrete case, or the square loss `(θ, δ(X)) = ‖θ − δ(X)‖2.

I Note that in general, δ(X) does not necessarily have to be
an estimate of θ.

I To make decisions, we need to calculate which procedure is
the best even though we cannot observe the true nature of
the parameter space and data.



Frequentist Risk 25/41

I The frequentist risk is

R(θ, δ) = Eθ(`(θ, δ(X)))

where θ is held fixed and the expectation is taken over X .

I Often, one decision does not dominate the other
everywhere (e.g., δ1, δ2).

I The challenge is how should we decide which one is better
when they overlap, e.g., δ1, δ3?



Admissibility and Variance Bias Tradeoff 26/41

I A decision δ is inadmissible if it is dominated everywhere,
i.e., there exist δ′ such that

R(θ, δ′) ≤ R(θ, δ), ∀θ

E.g., δ2 compared to δ1 in the previous figure.

I Variance-bias Tradeoff

E‖θ − δ(X)‖2 = ‖θ − Eδ(X)‖2 + E‖δ(X)− Eδ(X)‖2

I Unbiased procedures are not always good. In fact, some
unbiased procedures can be inadmissible.



A Curious Case of Inadmissibility 27/41

I Consider the following model

xi|µi ∼ N (µi, 1), i = 1, . . . , N

where xi, i = 1, . . . , N are independent.

I A reasonable estimate of µ is µ̂MLE = x, i.e., the maximum
likelihood estimator.

I The MLE is unbiased, Ex = µ. Moreover, it also achieves
the Cramér-Rao Lower Bound, meaning that it is the best
unbiased estimator with the minimum variance.

I The expected squared error (i.e., frequentist risk when ` is
the squared error) is

E‖µ− x‖2 = N



A Curious Case of Inadmissibility 28/41

I While the above estimator is commonly used (e.g.,
ANOVA, regression), the statistics community was shocked
when Stein and James showed that the following estimator,
known as James-Stein estimator, dominates MLE for N > 2

µ̂JS =

(
1− N − 2

‖x‖2

)
x

I Theorem (James and Stein, 1961). For N ≥ 3, the
James-Stein estimator everywhere dominates the MLE
µ̂MLE in terms of the expected total squared error,

Eµ‖µ̂JS − µ‖2 < Eµ‖µ̂MLE − µ‖2

for every choice of µ.



Intuition from Bayesian Perspective 29/41

I Suppose that µ follows some prior distribution

µi ∼ N (0, A), i = 1, . . . , N

I The posterior is also Gaussian

µ|x ∼ N (Bx,BI), B =
A

A+ 1

I The Bayes estimator is

µ̂Bayes =

(
1− 1

A+ 1

)
x

I Unfortunately, we do not know A, how can we deal with it?



Intuition from Bayesian Perspective 30/41

I Now that we observe x, we can somehow estimate A from
x. In fact, the marginal distribution of x now is

x ∼ N (0, (A+ 1)I)

I Therefore, ‖x‖2 has a scaled chi-square distribution with N
degrees of freedom

‖x‖2 ∼ (A+ 1)χ2
N

I This gives the following unbiased estimate of 1/(A+ 1)

E
(
N − 2

‖x‖2

)
=

1

A+ 1

I Plug it back into µ̂Bayes gives µ̂JS.



Empirical Bayes 31/41

I We will show later the Bayes estimator have even lower
“risk”.

I Such shrinkage estimators are the main inspiration behind
the field of empirical Bayes, which was created to help
frequentist methods to achieve full Bayesian efficiency in
large scale studies.

I For more details, see Efron’s book on Large-Scale Inference.

I We will focus on more formal and principled Bayesian
framework, which provides similar benefits through the
shrinkage of parameter estimates.



Bayesian Analysis in A Nutshell 32/41

I Bayesian inference starts by defining the joint probability
for our prior opinion and the mechanism based on which
the data are generated.

I To make inference, we refer to this updated opinion as our
posterior opinion, which itself is expressed in terms of
probabilities.

I Probability has a central role in Bayesian statistics, and
provides a coherent and axiomatic framework for deriving
Bayesian methods and making statistical inference.



Probability: Bayesian vs Frequentist 33/41

I In the Bayesian paradigm, probability is a measure of
uncertainty.

I A Bayesian statistician would use probability models for
random variables that change and those that might not
change (e.g., the population mean) but we are uncertain
about their value.

I Consider the well-known coin tossing example. What is the
probability of head in one toss?

I There are only two possibility for the outcome: head and
tail. Assuming symmetry (i.e., a fair coin), head and tail
equal probability 1/2.



Probability: Bayesian vs Frequentist 34/41

I In the frequestist view, probability is assigned to an event
by regarding it as a class of individual events (i.e., trials)
all equally probable and stochastically independent.

I For the coin tossing example, we assume a sequence of iid
tosses, and the probability of head is 1/2 since the number
of times we observe head divided by the number of trials
reaches 1/2 as the number of trials grows.

I Note that while Bayesians and frequentists provide the
same answer, there is a fundamental and philosophical
difference in how they view probability.

I Bayesian feel comfortable to assign probabilities to events
that are not repeatable.

I For example, I can show you a picture of a car and ask
“what is the probability that the price of this car is less
than $5000?”



Priors 35/41

I As mentioned above, within the Bayesian framework, we
use probability not only for the data, but also for the
model parameters, since it is the population parameter and
is almost always unknown.

I We usually use our (or others’) domain knowledge, which is
accumulated based on previous scientific studies.

I We almost always have such information, although it could
be vague.



Subjective Priors 36/41

I For example, consider the study conducted by Mackowiak,
et al. to find whether the average normal body
temperature is the widely accepted value of 37◦C.

I Let’s denote the average normal body temperature for the
population as θ. We know that θ should be close to 37◦C;
that is, values close to 37◦C are more plausible than values
close to 34◦C for example.

I We assume that as we move away from 37◦C the values
become less likely in a symmetric way (i.e., it does not
matter if we go higher or lower).



Subjective Priors 37/41

I Base on the above assumptions (and ignoring the fact that
body temperature cannot be negative), we can set
θ ∼ N (37, τ2).

I In the above prior, τ2 determines how certain we are about
the averge normal body temperature being around 37◦C.

I If we believe that it is almost impossible that the average
normal body temperature is above 22 and below 52, we can
set τ = 5 so the approximate 99.7% interval includes all the
plausible values from 22 to 52.

I A general advise is that we should keep an open mind,
consider all possibilities, and avoid using very restrictive
priors.



Hierarchical Priors 38/41

I Sometimes, our prior opinion is based on what we know
about the underlying structure of the data.

I For example, in many classification problems, we have prior
knowledge about how classes can be arranged in a
hierarchy.

I Hierarchical classification problems of this sort are
abundant in statistics and machine learning.

I On such example is prediction of genes biological functions.



Hierarchical Priors 39/41

I As shown in the following figure, gene functions usually are
presented in a hierarchical form, starting with very general
classes (e.g., cell processes) and becoming more specific in
lower levels of the hierarchy (e.g., cell division)

Adapted from Riley 1993

I In the Bayesian framework, we can incorporate such
information in our model.



Course Outline 40/41

I So far, we have tried to establish why we use Bayesian
analysis and introduced some basic concept of it.

I Throughout this course, we will discuss different Bayesian
methods and theory, modern Bayesian models and their
applications for analyzing scientific problems.

I We first start with simple and classic models, then move to
more complicated models (e.g., hierarchical models),
followed by advanced computational methods.

I Finally, we will discuss Bayesian nonparameteric, with an
emphasis on Gaussian process models and Dirichlet process
models.
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