
Bayesian Theory and Computation, Problem Set 2

April 20, 2021 Due 05/04/2021

Problem 1.
In a linear regression model the n-vector of responses y has distribution y|β ∼ N (Xβ, In),
with mean response vector µ = E(y|β) = Xβ and identity variance matrix, where X is
the n×p design matrix of rank p and β is the p-vector of regression coefficients. Suppose
that the prior for β is β ∼ N (0, g−1(XTX)−1) for some number g > 0 (this is known as
g-prior).

(1) What is the posterior distribution of β|y?

(2) Show that the posterior mean E(β|y) can be expressed as a function of β̂, the usual
MLE of β.

(3) What is the posterior mean and posterior variance matrix of µ?

(4) Consider the special case of an orthogonal design, so that XTX = Ip. Denote by µi
the ith element of µ. Under the posterior p(µ|y), are µj and µk independent for j 6= k?

Problem 2.
The following table gives the worldwide number of fatal accidents and deaths on sched-
uled airline flights per year over a ten year period (from Table 2.2 in Gelman, et al.).
Death rate is passenger deaths per 100 million passengers miles.

Assume that the number of fatal accidents in each year, Yi, follow independent Poisson
distribution with intensity linear in the number of passenger miles flown, Xi. In other
words, Yi ∼ Poisson(λi) with λi = α + βXi. (You can approximate the number of
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passenger miles flown by dividing the appropriate columns of the table and by ignoring
round-off errors.) Consider a Bayesian solution to this Poisson regression problem, using
constant priors on α, β subject to the natural constraint that α+ βXi ≥ 0 for all i.

(1) Choose a suitable fine grid, and evaluate the posterior means of α and β by writing
these as suitable integrals and then approximating such integrals with finite sums. Note
that the joint posterior is not normalized.

(2) Compute the MLE and observed Fisher information matrix. Based on your com-
putation, construct a normal approximation to the posterior distribution. Report the
posterior means and 95% credible intervals for α and β based on this normal approxi-
mation. Compare the posterior mean estimates with those in (1).

(3) The normal has thin tails. Consider a bivariate t distribution with four degrees of
freedom to approximate the posterior. Generate 10000 draws from this bivariate t dis-
tribution and report posterior means and 95% credible intervals based on these draws.
Compare with (2).

(4) We can refine the approximation in (3) by using importance sampling. Describe
how importance sampling works (using the bivariate t as the proposal density) in this
context. Compare the estimated posterior means and 95% intervals with those in (2)
and (3).

Problem 3.
Consider the following model

zi|µi ∼ N (µi, 1), µi ∼ N (0, A), i = 1, . . . , N

The James-Stein estimator is defined to be

µ̂JS =

(
1− N − 2

S

)
z, S = ‖z‖2 =

N∑
i=1

z2i

(1) What is the Bayes estimator µ̂Bayes for µ = (µ1, . . . , µN ) when the square error lost
is used? And what is the MLE µ̂MLE?

(2) Compute the integrated risk for µ̂JS, µ̂Bayes and µ̂MLE.

(3) Simulate data sets with different µ and N . Estimate the frequentist risk of µ̂JS

Eµ‖µ̂JS − µ‖2

How does it compare with Eµ‖µ̂MLE − µ‖2? Report your findings.

Problem 4.
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Consider the following nonlinear reference model

Xt =
1

2
Xt−1 +

25Xt−1

1 +X2
t−1

+ 8 cos(1.2t) + ξt

Yt =
X2
t

20
+ ηt

(1)

where X0 ∼ N (0, 5), ξt and ηt are mutually independent white Gaussian noises, ξt ∼
N (0, σ2ξ ) and ηt ∼ N (0, σ2η) with σ2ξ = 10 and σ2η = 1. Since the observation Yt is
no longer a linear function of Xt, it is not possible to evaluate analytically p(Yt|Xt−1)
or to sample simply from p(Xt|Xt−1, Yt). We propose to approximate it with a locally
linearized observation equation.

(1) Let f(Xt−1) = 1
2Xt−1 + 25Xt−1

1+X2
t−1

+8 cos(1.2t). Consider a locally linear approximation

of Yt at f(Xt−1) as follows

Yt ≈
f2(Xt−1)

20
+
f(Xt−1)

10
(Xt − f(Xt−1)) + ηt

Derive the approximate locally optimal importance distribution p(Xt|Xt−1, Yt) using the
above linear approximation.

(2) Simulate a data set from the model (1) with t = 0, . . . , 100. Implement sequential
importance sampling with N = 100 particles using the importance distribution derived
in (1). Report your estimate of the marginal posterior p(x100|y≤100) as a histogram. Plot
the ESS of the importance weights as a function of time t.

(3) Run another sequential importance sampling with N = 100 particles using the naive
importance distribution p(Xt|Xt−1). Report the results and compare them with (2).
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