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Introduction



Inverse Problems

Given y ∈ Y, find θ ∈ X, s.t.
y = G(θ)

• G: observation operator (forward model)
• y: observed data

Examples

• Linear regression: G(θ) = Aθ
• Elliptic Inverse Problem

−∇ · (eθ∇u) = f, x ∈ D
u = ϕ, x ∈ ∂D

G(θ) = l(uθ), where l is some linear functional of uθ .
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Classical Approach

Inverse problems are typically ill-posed: no solution, solution not
unique, sensitive on y.

Least-square

+ regularization

argmin
θ∈X

1
2∥y− G(θ)∥2Y

+
1
2∥θ − θ0∥2

However, choice of norms and regularization are somewhat arbitrary.
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The Bayesian Approach to Inverse Problems

A more appropriate model with noisy observations

y = G(θ) + η

• η: observational noise

Suppose η ∼ ρ(η), the data likelihood is

p(y|θ) = ρ(y− G(θ))

Given prior θ ∼ p(θ), the posterior is

p(θ|y) ∝ p(y|θ)p(θ) = ρ(y− G(θ))p(θ)

Remark: classical approach (with regularization) can be viewed as
maximum a posterior estimate (MAP).
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Markov Chain Monte Carlo

Metropolis-Hastings

• draw a sample θ′ ∼ q(θ′|θ)
• accept with probability α(θ′|θ) = min

(
1, p(θ

′|y)q(θ|θ′)
p(θ|y)q(θ′|θ)

)
.

Simple MCMCs are not efficient when parameters are correlated.

Hamiltonian Monte Carlo

H(θ, r) = − logp(θ|y) + 1
2 r

TM−1r⇔ p(θ, r) = p(θ|y) · N (r|0,M)

• draw an auxiliary momentum r ∼ N (0,M)
• simulate the Hamiltonian dynamics: (θ, r) → (θ′, r′)

dθ
dt = ∇rH,

dr
dt = −∇θH

• accept with probability
α(θ′, r′|θ, r) = min(1, exp[H(θ, r)− H(θ′, r′)])
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Scalable Bayesian inference via
Surrogate Methods



Computational Challenges

Potential energy function

U(θ) ≜ − logp(θ|y)
= − log ρ(y− G(θ))− logp(θ)

Challenges

• dependency on θ is unknown, complicated posterior
• forward model G(θ) is computationally expensive, U(θ),∇θU(θ)
are hard to evaluate

Cheng Zhang (Fred Hutch) 5/12



Surrogate Methods

Idea: exploit the regularity of the probabilistic model

U(θ) ≈ US(θ), ∇θU(θ) ≈ ∇θUS(θ)

First suggested by Neal, Liu in 90s. Examples: Gaussian Processes
(Rasmussen 2003, Lan et al 2016), Reproducing Kernel Hilbert Spaces
(Strathmann et al 2015), Random Networks/Bases (Zhang et al 2017).
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Random Bases Surrogate

USψ(θ) =
s∑
i=1

ψia(θ; γi), γi ∼ q(γ)

Train by matching the function values or gradient values
potential matching

ψ̂ = argmin
ψ,b

M∑
j=1

∥USψ(θj)− U(θj)− b∥2
score matching

ψ̂ = argmin
ψ

M∑
j=1

∥∇θUSψ(θj)−∇θU(θj)∥2

where T = {θ1, . . . , θM} is the training set (e.g., data from burn-in).

Why use random bases?

• scales linearly with M, while GPs and RKHS scale cubically.
• theoretical guarantee for good approximation (Rahimi and
Recht 2008): ∀f, with probability 1− δ, ∃ψ s.t.

∥USψ − f∥ ≤ ∥f∥√
s

(
1+

√
2 log 1

δ

)
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Surrogate Induced Hamiltonian Flow

Define HSψ(θ, r) = USψ(θ) + 1
2 r
TM−1r, surrogate induced Hamilton’s

equations
dθ
dt = M−1r, dr

dt = −∇θUSψ(θ)
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An Elliptic PDE Inverse Problem

Let κ be the diffusion function and u be the pressure field

−∇ · (κ∇u) = 0, x ∈ [0, 1]2

u(x1, 0) = x1, u(x1, 1) = 1− x1, ∂x1u(0, x2) = ∂x1u(1, x2) = 0

A log-Gaussian prior is used for κ

K(x, y) = σ2 exp
(
−∥x− y∥22

2ℓ2

)
parameterize diffusivity field with Karhunen-Loeve (K-L) expansion

κθ(x) ≈ exp
( d∑

i=1

θi
√
λivi(x)

)

noisy observations

yj = uθ(xj) + ηj, j = 1, . . . , J
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Results

Table 1: Comparing HMC, Riemannian Manifold HMC (RMHMC) and random bases
surrogate accelerations. For each method, we provide the acceptance probability (AP),
the effective sample size (ESS), the CPU time (s) for each iteration and the
time-normalized ESS.

Method AP ESS s/Iter min(ESS)/s spdup
HMC 0.91 (4533,5000,5000) 0.775 1.17 1

RMHMC 0.80 (5000,5000,5000) 4.388 0.23 0.20
RNS-HMC 0.75 (2306,3034,3516) 0.066 7.10 6.07

RNS-RMHMC 0.66 (2126,4052,5000) 0.097 4.38 3.74
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Adaptive Training
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Conclusion

• We proposed random bases surrogate methods, an efficient
scalable Bayesian approach for inverse problems.

• Random bases surrogates properly exploit regularity of
probabilistic models, and remain data efficient. More efficiency
can be obtained when used adaptively.

• Surrogate methods can be used for big data problems as well.
Moreover, surrogate methods lead to a natural combination of
variational inference and MCMC (Zhang et al 2018).

• We can incorporate more flexible approximating architectures in
surrogate construction.
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Questions?
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Bias, Variance, and Computation Trade-off

Variance

Computation

Bias

Stochastic Gradient

Su
rro
ga
te
M
et
ho
d
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