
Improved Variational Bayesian Phylogenetic 
Inference with Normalizing Flows

Bayesian Phylogenetic Inference

Bayesian approaches for reconstructing the evolution history (e.g., 
phylogenetic trees) from molecular sequence data (e.g., DNA, RNA or 
protein) is to estimate the following phylogenetic posterior

• Significantly improve the branch length approximations. 
• Can provide additional amortization benefit.

Variational Bayesian Phylogenetic Inference

Subsplit Bayesian Networks

Tree probability estimation
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Permutation Equivariant Normalizing Flows

Variational Bayesian Phylogenetic Inference (VBPI) is a recently 
proposed general variational framework for Bayesian phylogenetic 
inference that outperforms MCMC methods with greatly enhanced 
computation efficiency. However, the diagonal lognormal branch length 
approximation might be too simple for real data posteriors.

                            p(τ, q |Y ) ∝ p(Y |τ, q) ⋅ p(τ, q)

Based on carefully designed permutation equivariant normalizing flows 
for the non-Euclidean branch length space across tree topologies, we 
propose VBPI-NF as a first step to empower phylogenetic posterior 
estimation with deep learning techniques that

ACATGGCTC...
ATACGTTCC...
TTACGGTTC...
ATCCGGTAC...
ATACAGTCT......

• Rooted Tree:   
  

• Unrooted Tree:  

psbn(T = τ) = p(S1 = s1)∏i>1 p(Si = si |Sπi
= sπi

)

psbn(T u = τ) = ∑s1∼τ p(S1 = s1)∏i>1 p(Si = si |Sπi
= sπi

)
Tree sampling

Training Objective. A multi-sample lower bound is used that facilitates 
exploration in the tree space

LK(ϕ, ψ) = 𝔼Qϕ,ψ(τ1:K,q1:K) log ( 1
K

K

∑
i=1

p(Y |τi, qi)p(τi, qi)
Qϕ(τi)Qψ(qi |τi) ) ≤ log p(Y )

Branch Length Approximation. Currently, VBPI still uses simple diagonal 
Lognormal distribution for branch length approximation 
                   Qψ(q |τ) = ∏e∈E(τ) pLognormal (qe |μ(e, τ), σ(e, τ))
Structured Amortization via primary 
subsplit pairs (PSP). 
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Inconsistent alignments of branch length vectors across tree topologies

Permutation Equivariant Planar Flows 

                   ze = q̃e + γea (∑e′ ∈E(τ) w′ eq̃′ e + b), e ∈ E(τ)

Permutation Equivariant RealNVP 
               
where 

                  

Structured amortization via PSP is used for all parameters.

ze = q̃e, e ∈ Sc . ze = q̃e exp(αe(q̃Sc)) + βe(q̃Sc), e ∈ S
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Experiments

Lower bounds and marginal likelihood estimation

Computational complexity and convergence behaviors

Inference gaps on tree topologies

Unfortunately, traditional random walk MCMC methods do not scale.

• Rooted Tree:  ancestral sampling 
• Unrooted Tree: ancestral sampling + root deletion
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