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Introduction 1Aﬂ A Experiments
Goal: Estimate the probability of phylogenetic (i.e. evolutionary) -— o SBN algorithms perform consistently much better than CCD on a challenging
trees based on MCMC samples D D. tree probability estimation problem with simulated data.
Motivation: Current methods are unsatisfactory D D — >
« The common practice of using simple sample relative frequencies | 0016 ‘ oos ‘
(SRF) does not support unsampled trees, and is prone to large A A o.00s S o o008
variance between different runs n B B 0.004 - oo |
= Previous efforts do extend to unsampled trees, but make too CD~/ C - 9. v I v . I
strong assumptions to provide accurate posterior estimation for e J LB pm—
real data. \\ . /I<<= 4000 BK= 0.008
By introducing a novel graphical model, subsplit Bayesian Subsplit Bayesian Network ML for Rooted Trees :: Ed ) i Ed
networks, we propose a general probability estimation framework 200 4 sonem-a /ﬁ v 4 sbnema
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for phylogenetic trees that

A subsplit Bayesian network (SBN) By on a leaf set X of
size N is a Bayesian network of depth N — 1 whose nodes take on

Given a sample of rooted trees D = {T};,}7*,, where T}, = {S; =
Sik, 1 > 1}, k=1,..., K, the SBN log-likelihood function is

KL divergence
[
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KL divergence

= generalizes to unsampled trees | . . N
» provides accurate approximation for real data posteriors subsplit or singleton clade values of A" and log L(D) = f: log p(S; = s14) + 3 log p(S; = s 1S = 554) oLt i : L
= the root node takes on subsplits of the entire leaf set X i ’ i1 Lo T p «

= contains a full and complete binary tree B Using conditional probability sharing, we have SBN algorithms relax the conditional clade independence assumption and

log L(D) = > mglogp(Si=s1)+ Y., msilogp(s|t) provides accurate approximation in multimodal distributions.
s1€C, s[teCopppa CCcD SBN-EM DS1

Psn(T) = p(S1) T1 p(S:].Sx) where C,. denotes the set of all observed root splits of 51, Cyjpa 10 | 10 10 S R

t>1 #— sbn-sa
SBNs provide valid probability distributions of the entire tree space denotes the set of all observed parent-child subsplit pairs, and —+ sbn-em
ms,, Ms+ denotes the corresponding frequency counts.

—4— sbn-em-a
and are flexible to capture complicated dependence structures.

Problem Setu
v SBNs probability for rooted trees
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Learning SBNs for Unrooted Trees
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When applied to a broad range ot data sets, we find that SBNs consistently
outperform other methods.
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TREE SPACE SAMPLED KL DIVERGENCE TO GROUND TRUTH
] P @ DATA SET (£ TAXA, #OITES) =51z TREES  SRF  CCD SBN-SA SBN-EM SBN-EM-a

A phylogenetic tree T is a binary tree with labeled leaves. DS1 (27, 1949)  5.84x10%2 1228  0.0155 0.6027 0.0687 0.0136  0.0130
A ‘A DS2 (29, 2520) 1.58x 103 7 0.0122 0.0218 0.0218 0.0199  0.0128
= label set X = {Oy,...,On}, each label represents a species. %& DS3 (36, 1812)  4.89x10%7 43 0.3539 0.2074 0.1152 0.1243  0.0882
. B B DS4 (41, 1137) 1.01x1057 828  0.5322 0.1952 0.1021 0.0763  0.0637
* A clade X is a nonempty subset of X O D Fogp > 9 -— AB g DS5 (50, 378) 2.84x107* 33752 11.5746 1.3272 0.8952 0.8599  0.8218
o . . . /U%Ot O & N DS6 (50, 1133) 2.84x10™ 35407 10.0159 0.4526 0.2613 0.3016 0.2786
Conditional Clade Distribution O @ DS7 (59, 1824)  4.36x10°2 1125 1.2765 0.3292 0.2341 0.0483  0.0399
o o D DS8 (64, 1008) 1.04x101% 3067 2.1653 0.4149 0.2212 0.1415  0.1236

= Clade Decomposition (follow the splitting process of the tree). D

Te = {05, C3, (Y, Cs, Cg, C7} Lower Bounds Maximization Conclusion

« Conditional Independent Approximation
pCCd(T) — p(027 C37 047 057 067 07)
= p(Cy, C3)p(Cy, C5|C2)p(Co|C5)p(C+| C3)

Let > be a total order on clades. A subsplit (Y, Z) of a clade X is an
ordered pair of disjoint subclades of X such that Y UZ =X, Y > Z.

 Root Marginalization

pan(T") = Y p(S1) IT p(Si]Sx) . Simple Averaging
Sy~ i>1 1

where ~ means all root subsplits that are compatible with T™. (51 = s1) = ON — 3’
» Expectation Maximization
" (S, = s1) = p(Sy = 1 |T", pM), Wsy ~ T

Remark: can incorporate regularization when data is insufficient
or the number of parameters is large.

We have proposed a general framework for tree probability estimation base on
subsplit Bayesian networks. SBNs allows us to exploit the similarity among
trees to provide a wide range of flexible probability estimators that generalize

VSl ~ T"

- Variational Lower Bounds beyond observations. Numerical results demonstrate the importance of

o p(S1) Ii=1 p(Si|Sx,)
LT = SZJ:TUQ(SO 08 q(S1)

where ¢q is a probability distribution on S; ~ T™.

being both flexible and generalizing when estimating probabilities on trees.
We hope that these ideas will help practitioners design more efficient tree
proposals for MCMC transition kernels and inspire new structural learning
methods for phylogenetic models.

= Subsplit Decomposition < log pgu(T™)

1s = {(027 03)7 (047 05)7 ({03}7 06)7 (077 {08})}
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