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Motivation

If the probabilistic model contains both continu-
ous and structural discrete parameters, how can

we sample from the posterior efficiently?

« Simple MCMCs are not efficient at sampling
continuous parameters

» Advanced MCMC s, e.g. Hamiltonian Monte
Carlo, can not handle discrete parameters

BL on Orthant Complexes

An orthant complex is a geometric object X ob-
tained by gluing orthants of the same dimension

X ={(r,q):7el, g e Ry}

where I 1s a countable set. Given observations D
and proper priors my(7, q), the posterior

P(7,q|D) oc L(D|7, q)mo(T, q)
(7,¢:) = (T,¢) = ¢ = ¢, T €EN(T,¢;)
« The adjacency graph of X has finite diameter £.

- U(1,q) = —log P(T, q) is continuous and smooth
up to the boundary.

A Challenging Example

Let (7,q) be a phylogenetic tree and v = {1;}%,
be the observed sequences over the leaves.

A
A

AA
CA

GCATGC
GCATGC
A CATGCATGC

A CATGCATGC
(7, q) 19 Vs

A continuous-time Markov chain is usually used to
model the evolution history

S
LYlr,q) =11 >onla,) 11 Ppios(quo)

s=1 a (u,v)EE(T,q)

« Bfficient computation via Felsenstein’s pruning
algorithm [1].

« Orthant Complexes: NINI neighbors.

= # possible topologies: T'(n), # leaves: n

(2n — 5)!

__ _O(nlogn)
(n —3)1 273 g

€

T(n) =
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Hamiltonian: H(7,q,p) =U(7,q) + K(p), U(7,q) = —log P(1,q), K(p) = %HPHQ

pi= —pi T~ ZIN(T Q) I
dgi D C
E — M1

Theoretical Properties

Augmented state: s = (7,q,p). Let A, B be a pair
of measurable sets in the augmented state space. We
assume the following condition

P(7'|t,q) = P(r|7",q), 7" € N(7,q)
which is true with uniform topology proposal Z.

o Probabilistic Reversibility.
P((Tv Q7p)7 (T*a q*ap*)) — P((T*a q*v _p*)a (7_7 q, _p>)

o Stochastic Volume Presevation.

/A/B Pls,8)ds’ ds = /B /A P(s',s)ds ds’

© k-accessibility. Any two states in X can be
connected by k iterations of probabilistic path

HMC.

Theorem. Probabilistic Path HMC' preserves
the posterior and 1s ergodic.

Surrogate Smoothing

OU is usually non-differentiable on the boundary
which lead to O(Ce + Te’) global numerical er-
ror, where C' is the number of reflection /refraction
events. We found a recipe by using a surrogate
smoothing strategy and refraction in the leap-frog
steps.

~

U(Tv Q) — U(Tv G(Q)>

G(q) = (95(q1), 95(2); - - - 95(G2n—3))
and
T, x>0
90() = {;5(3;%52), 0<z<0d
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Reflection and Refraction

'To maintain the desired properties of Hamiltonian
dynamics, we adopted the reflection and refraction
technique |2| when jumping between topologies.

= Reflection. U(r, q) is continuous across boundary

AE = U(Tlv Q) o U(Ta Q) =0, ¢=0

i 0 % 4 0 i
Momentum & topology update:
pi=-—pi T=T

« Refraction. Surrogate evens the gradients while
creating controllable energy gaps AE # ()

y J—q /

Momentum & topology update:

oy E Vel = 2AE)
(i) = {(Ta —Di)

|pill* > 2AE
otherwise
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Results
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Figure 1. Expected number of NNI moves on a real data set.
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Figure 2: Loglikelihood vs topology transitions on a 1000 taxa

simulated data set.

Contributions

» Extended HMC towards sampling both
continuous and structural discrete parameters.

« Developed a smoothing surrogate function that
enables long HMC paths with potential
non-differentiable boundary transitions.

References

1] J. Felsenstein, J. Mol. Evol., 17(6) (1981), 368-376
2| H. M. Afshar, J. Domke, NIPS (2015), 2989-2997

Acknowledgements




