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Motivation

If the probabilistic model contains both continu-
ous and structural discrete parameters, how can
we sample from the posterior efficiently?
•Simple MCMCs are not efficient at sampling
continuous parameters

•Advanced MCMCs, e.g. Hamiltonian Monte
Carlo, can not handle discrete parameters

BL on Orthant Complexes

An orthant complex is a geometric object X ob-
tained by gluing orthants of the same dimension

X = {(τ, q) : τ ∈ Γ, q ∈ Rn
≥0}

where Γ is a countable set. Given observations D
and proper priors π0(τ, q), the posterior

P (τ, q|D) ∝ L(D|τ, q)π0(τ, q)
• (τ, qτ) = (τ ′, qτ ′)⇒ qτ = qτ ′, τ

′ ∈ N (τ, qτ)
•The adjacency graph of X has finite diameter k.
•U(τ, q) = − logP (τ, q) is continuous and smooth
up to the boundary.

A Challenging Example

Let (τ, q) be a phylogenetic tree and ψ = {ψi}Si=1
be the observed sequences over the leaves.
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A continuous-time Markov chain is usually used to
model the evolution history

L(ψ|τ, q) =
S∏
s=1

∑
as
η(asρ)

∏
(u,v)∈E(τ,q)

P uv
asua

s
v
(quv)

•Efficient computation via Felsenstein’s pruning
algorithm [1].

•Orthant Complexes: NNI neighbors.
•# possible topologies: T (n), # leaves: n

T (n) = (2n− 5)!
(n− 3)! 2n−3 = eO(n log n)

Hamiltonian: H(τ, q, p) = U(τ, q) + K(p), U(τ, q) = − logP (τ, q), K(p) = 1
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Theoretical Properties

Augmented state: s = (τ, q, p). Let A,B be a pair
of measurable sets in the augmented state space. We
assume the following condition

P (τ ′|τ, q) = P (τ |τ ′, q), τ ′ ∈ N (τ, q)
which is true with uniform topology proposal Z.
1 Probabilistic Reversibility.

P ((τ, q, p), (τ ∗, q∗, p∗)) = P ((τ ∗, q∗,−p∗), (τ, q,−p))

2 Stochastic Volume Presevation.∫
A

∫
B
P (s, s′)ds′ ds =

∫
B

∫
A
P (s′, s)ds ds′

3 k-accessibility. Any two states in X can be
connected by k iterations of probabilistic path
HMC.

Theorem. Probabilistic Path HMC preserves
the posterior and is ergodic.

Surrogate Smoothing

∂U is usually non-differentiable on the boundary
which lead to O(Cε + Tε3) global numerical er-
ror, where C is the number of reflection/refraction
events. We found a recipe by using a surrogate
smoothing strategy and refraction in the leap-frog
steps.

Ũ(τ, q) = U(τ,G(q))
G(q) = (gδ(q1), gδ(q2), . . . , gδ(q2n−3))

and
gδ(x) =

x, x ≥ δ
1
2δ(x

2 + δ2), 0 ≤ x < δ

Reflection and Refraction

To maintain the desired properties of Hamiltonian
dynamics, we adopted the reflection and refraction
technique [2] when jumping between topologies.

•Reflection. U(τ, q) is continuous across boundary
∆E = U(τ ′, q)− U(τ, q) = 0, qi = 0
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Momentum & topology update:
pi = −pi, τ = τ ′

•Refraction. Surrogate evens the gradients while
creating controllable energy gaps ∆E 6= 0
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Momentum & topology update:

(τ, pi) =
 (τ ′,

√
‖pi‖2 − 2∆E) ‖pi‖2 > 2∆E

(τ,−pi) otherwise

Results
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Figure 1: Expected number of NNI moves on a real data set.
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Figure 2: Loglikelihood vs topology transitions on a 1000 taxa
simulated data set.

Contributions

•Extended HMC towards sampling both
continuous and structural discrete parameters.

•Developed a smoothing surrogate function that
enables long HMC paths with potential
non-differentiable boundary transitions.
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